
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Design of Resource Allocation Structure for
Multi-Tenant Services in Kubernetes Cluster

Nguyen Thanh Nguyen, Younghan Kim*
School of Electronic Engineering, Soongsil University, Seoul, Korea

{ntnguyen, younghak}@dcn.ssu.ac.kr

Abstract—Nowadays, for multi-tenant cloud, there are
plenty of Kubernetes-based open-source projects that do
extraordinary in management, isolation multitenancy. These
systems allow multiple customers to share the same clusters by
dividing them into multiple logical clusters. To satisfy each
tenant different workload demand, resource allocation is
handled manually by the multi-tenant system administrator.
However, this static resource provisioning method cannot adapt
to address workload bursting or scaling enough Pod to serve at
peak hour and scaling down the number of Pods at least hour.
In our paper, we propose a design of dynamic resource
allocation in Kubernetes multi-tenancy system to address the
missing dynamic resource allocation in the multi-tenant
Kubernetes control plane. We start with a controller interacting
with the multi-tenant system, which offers dynamic resource
allocation, automated scheduling workloads, and policies-based
placement. We also present the preliminary results
demonstrating the applicability of allocating resources to
tenants' applications and services to adapt to workloads
changes. Our initial results show fast Pod creation time with the
help of a policies-based scheduler and a resources allocator to
tenant's applications.

Keywords—Kubernetes, Kubernetes multi-tenant, cloud
management, multicluster, geo-distributed.

I. INTRODUCTION
Due to the dynamic and variability of cloud

infrastructures, multi-tenant computing is challenging. This
is caused by varying performance, workload, and application
characteristics on the cloud. Currently, Kubernetes is mostly
recognized as a platform for container orchestration. In
addition, a wide range of innovative tools and services have
developed around the Kubernetes APIs. Kubernetes have
weak multi-tenant because these namespaces could not fully
isolate each other, so some multi-tenancy systems have been
used to divide physical clusters into multiple instances [1].

Multi-tenancy system allows multiple customers to work
on the same Kubernetes clusters. That helps the infrastructure
owner save the cost while customers also have the flexibility
to use the cloud infrastructure and optimize their budget for
their business.

Presently, multi-tenant systems lack the facility of
allowing clients to dynamic change their resources based on
their business demands or create and allocate resources for
new tenants. Multi-tenant system administrator manually
does all the work of allocation or changing tenant's resources.
Resource allocation is challenging to save cost and maximize
utilization of resources while not affecting other tenants [2].

In this paper, we take an approach toward dynamic
resources allocation, workload scheduling and deploying a
multi-tenant with dynamic scheduling and provisioning
based on a multi-tenant system Kubernetes control plane. Our
dynamic resource provisioning ensures that the set of
provisioned resources is able to meet the demand and
requirements of tenancy and not affect the other tenants using
available resources.

Our paper is organized as follows: Section II introduces
background multi-tenancy cloud and related works. Our
architecture and dynamic provisioning models used to
represent resources are explained in Section III. Section IV
shows the our preliminary implementation. Section V shows
the preliminary experimental results. Finally, we present the
conclusion and future works in Section VI.

II. BACKGROUND

A. Multi-tenancy Cloud
To achieve maximum utilization of infrastructure

resources, one method to use a physical server is divided
infrastructure into multiple instances, and each instance is
assigned to one tenant - who use resource and infrastructure
 for their businesses [2]. Multi-tenancy is a principle in
software architecture where a single instance of the software
runs on a server, serving multiple users/organizations
(tenants). Multitenancy contrasts with multi-instance
architectures where separate software instances (or hardware
systems) operate on behalf of different client organizations
[2].

In general, multi-tenancy in Kubernetes clusters falls into
two wide categories [1]:

- Multi-tenant Team: This type shares a cluster or multi-
cluster between multiple teams within an organization.

- Multi-tenant Customer: This type is strongly isolated
between each tenant. The cluster is the separation into
multiple instances for tenant purposes. Multi-tenant customer
requires isolation of both data plane and control plane.
Isolation and cost optimization are the most critical
requirements. We only focus on multi-tenant customers in
our paper.

There are current multi-tenant Kubernetes projects: KCP
[3], Capsule [4] and Kiosk [5]. All these projects deploy
multitenancy systems on a physical cluster by dividing a
physical cluster into multiple logical clusters. Their approach
uses an operator inside each Kubernetes to provide isolation
and control plane for each tenant. But with Capsule [4] and
Kiosk [5] use a Kubernetes extension to access their
resources, while KCP has an API server to provide customers
with an easy way to access their resources. In addition, KCP
provides an abstraction for the entire infrastructure below that
can support advanced features that are hardly implemented
on other multi-tenant systems i.e., inheritance, resources
allocation, automatic management, etc. Each logical cluster
has its own API server control plane and data plane, so it was
fully isolated [3]. Two terminologies of KCP for multi-tenant
cluster management are logical cluster and workspace -
which use for abstraction and advanced features of KCP.

*Corresponding author: Younghan Kim (younghak@dcn.ssu.ac.kr)

651978-1-6654-9927-9/22/$31.00 ©2022 IEEE APCC 2022

1) KCP – Minimal True Multi-tenant Kubernetes Control
Plane

 KCP is a generic Custom Resource Definition (CRD)
API-server that is divided into multiple "logical clusters" that
enable multitenancy of cluster-scoped resources such as
CRDs and Namespaces [3]. Each logical cluster is fully
isolated from the others, allowing different teams, workloads,
and use cases to live side by side. KCP used two primary
ways to share a Kubernetes cluster for multi-tenancy: using
Namespaces (i.e., a Namespace per tenant) and virtualizing
the control plane (i.e., Virtual control plane per tenant).

a) Logical Clusters
Logical cluster [3] is a terminology of KCP that represent

a virtual cluster. From the user's point of view, each logical
cluster does not differ from a physical cluster. The one
concrete component that cannot be tenanted is API resources
- from a Kubernetes perspective. Each logical cluster has its
own API resources that store separated in etcd database of
KCP server. A logical cluster is created with the lowest cost
- nearly zero in terms of resource utilization & cost for an
empty cluster.

b) Workspaces
Workspace [3] is the generic representation of the concept

to represent a set of user-facing APIs for CRUD. A logical
cluster backs each workspace. To a user, a workspace appears
to be a Kubernetes cluster minus all the container
orchestration-specific resources. Workspace is a part of an
organization.

2) Cluster API
 Cluster API is a project that provides declarative APIs and
tools for provisioning, upgrading, and operating the
Kubernetes cluster [6]. Cluster API can connect to cloud
providers and expose API to users that enables user can that
automate cluster creation, configuration, operation,
deployment, and management of their workloads across
various infrastructure environments, avoiding vendor lock-in
[6,7].

B. Related Works
Recently, several works have utilized the advantages of

models or algorithms to schedule and allocate resources in
software-as-a-service, cloud environments. Ramachandran et
al. [8] implemented a model user interface, which enables
tenants can customize their system or dynamic change system
resources and requirements. Their model help infrastructure
owner and tenants save time and energy in configuring and
provision resources. Still, the limitation of [8] is that the user
interface only has static configurations and is not based on
the business application's demands. Also, using dynamic
resources allocation, author of [9] propose a prediction to
predict and allocate virtual machine to minimize time
provisioning. They used the best-fit algorithm for allocation,
but it reveals some cases do not meet the tenant requirement.
The approach of [9] is only considered for a dedicated multi-
tenant system that provides tenancy on the virtual machine,
not Kubernetes cluster.

Meanwhile, Zhiming Shen et al. [10] propose a resource
scaling system to automate scale resources to meet tenant
application requirements. However, the schemes in [10]
apply for a dedicated multi-tenant system based on virtual
machines. Besides, [10] has several limitations: complicated
thresh hold of requirements and high prediction errors for
long-time prediction tasks. Our approach offers an allocation
resource mechanism for multi-tenant system based on
Kubernetes cluster to satisfy resources demand of tenant's
application. We implemented a comprehensive system using
a combination of several controllers integrated with KCP that
aims to utilize resources, dynamic allocate resources, and
adapt to the tenant's application demands.

III. SYSTEM DESIGN
 This section introduces the design that represents KCP
server, our controllers, logical clusters along with their
tenants.
 Fig. 1 depicts an overview of system architecture. Main
components are a multi-tenancy management server, physical
clusters, and cloud provider. Firstly, Multi-tenancy Control
Plane is a KCP API-server along with several controllers.

Fig. 1. The design multi-tenancy architecture overview

652

 The KCP server is responsible for maintaining connections
to physical clusters and managing all logical clusters running
on physical clusters.
 The scheduler/rescheduler controller interacts with KCP
server to control scheduling workloads of tenants across
multiple clusters, rescheduling workloads when one or some
of the logical clusters got a problem, and workloads are
migrated to another logical cluster to ensure no disruption of
users. We offer policies-based scheduling workloads across
multi-clusters. Based on available resources on multi-cluster,
available resources on each cluster, and policies of tenant's
application, the scheduler scales tenant's application in the
multi-clusters environment that adapts to workload changes
and requirements of tenant.
 We used Prometheus to monitor and collect performance
data from physical clusters. Prometheus collects metrics
CPU, memory usage, and network metrics in each tenant [6].
According to the data of Prometheus, the scheduler controller
interacts with KCP server to change the resources and the
number of pods running. The auto-scaler component
monitors tenants' workloads and scales tenant services to
meet tenants' requirements.
 The cloud provisioner is a controller which offers dynamic
provisioning resources to the multi-tenancy control plane.

Cloud provisioner has an algorithm based on the system's
performance and scheduler to provision new clusters to adapt
to changes in tenant's workloads during peak hours. The
cloud provisioner directly interacts with Cluster API.
Through Cluster API, the cloud provisioner automatically
installs the logical cluster's dependencies into the new
physical cluster provisioned. After that, the new logical
cluster joins the Multi-tenancy system. This time, the
scheduler can deploy more Pod to adapt to the tenant's
workloads.
 Cluster API is connected to cloud infrastructure, and via
Cluster API cloud provisioner can send a request to provision
a new physical cluster or remove a physical cluster when
tenant's workloads are low.

IV. PRELIMINARY IMPLEMENTATION

A. Testbed
A multi-tenancy system with dynamic scheduling and

provision resources that we implemented is shown in Fig. 3
by its topology.

To create a multi-cluster environment, we use a switch to
simulate the environment as Fig. 4. We deploy a Kubernetes
cluster with one master and one worker. There are four
regions: the Gangeung, Gwangju, and Busan clusters, as well
as the Seoul cluster. In order to create a multi-cluster
environment, we use a switch to simulate that each cluster is
located at these locations.

Fig. 3. Topology of multi-tenancy system Fig. 4. Simulation of multi-cluster environment for testbed

Fig. 2. Detail multi-tenancy architecture with KCP API-server, scheduler, autoscaler and cloud provisioner for dynamic scheduling and provisioning resources

653

We deploy a Kubernetes cluster with one master and one
worker node. Seoul cluster uses nodes with 4 CPU cores and
16GB RAM, whereas others use nodes with 2 CPU cores and
8GB RAM.

We install Ubuntu server 18.04, Docker, and Kubernetes
version 1.20 on each worker node and master node in these
clusters.

B. Testing Scenario
We evaluate our proposal implementation system with a

stateless application with two tenants in each physical cluster.
Every physical cluster has two logical clusters for two
tenants.

Our system will be tested in two scenarios:
- Scenario 1: Running application without

provisioning new clusters, scheduler based on
metadata: placement, policies, resources, workloads
to deploy more Pod to adapt workload changes.

- Scenario 2: Running an application with a
combination of policies-based and provision new
cluster to deploy more Pod adapt user traffic bursting.

In scenario 1, we use a generator to generate user traffic
to the tenant 1 application and collect information from two
tenants' systems using Prometheus. This scenario tests the
multi-tenancy system's ability to scale applications.

In scenario 2, we generate user traffic to tenant
application to simulate the peak hour- when the user traffic is
very high in a short time. The system now increases the
number of Pod provisions and joins new clusters to serve the
user request and meet the tenant requirements.

V. PRELIMINARY EXPERIMENT RESULT
 We represent the initial result of the evaluation of our
system with scenario 1 - described in the previous section.
The chart in Fig. 5 shows the change in the number of
concurrent requests to the tenant's application, the number of
Pods needed to deploy to serve user's requests, and the time
taken for deploying Pods required (in second). The scheduler
based on available resources of multi-cluster and available
resources on each cluster, policies of tenant's application to
make a decision to deploy more Pod on which cluster. The
Pod creation time was calculated based on the Pod creation
timestamp and the Pod's ready condition timestamp. We use

the Pod configuration resources: CPU 200mili, RAM
200MB, to run a stateless application.
 Two columns demonstrate the number concurrent request
and number (light blue color) and number of Pods needed
(light pink color). When the concurrent request increase, the
autoscaler calculates the number of Pods needed based on
concurrent requests and the number of Pods. The creation
time is slower when the number of Pods is high. After that,
the autoscaler increases the number of Pods needed to serve
users' requests.

VI. CONCLUSION AND FUTURE WORKS
This paper presents a design of multi-tenancy cloud

management with dynamic scheduling and provisioning
resources that based on Kubernetes and running across multi-
cluster to maximize the utilization of resources usage. The
system offers a dynamic provision cloud cluster and
capabilities to scale multi-cluster applications to adapt to these
workload changes even in worst-case cloud bursting. The
design includes automatically scheduling workload between
logical clusters and policies-based placement.

We show our initial implementation of the system and
testing scenario. In the next version of this work, we plan to
include our testing results and performance analysis of the
system.

ACKNOWLEDGMENT
This work was partly supported by Institute of Information

& communications Technology Planning & Evaluation (IITP)
grants funded by the Korea government (MSIT) (No. 2020-0-
00946, Development of Fast and Automatic Service recovery
and Transition software in Hybrid Cloud Environment), and
(No.2022-0-01015, Development of Candidate Element
Technology for Intelligent 6G Mobile Core Network).

REFERENCES
[1] Kubernetes Documentation [Online], Available:

https://kubernetes.io/, Accessed on: July 20, 2022.
[2] C. Zheng, Q. Zhuang and F. Guo, "A Multi-Tenant Framework for

Cloud Container Services," in 2021 IEEE 41st International
Conference on Distributed Computing Systems (ICDCS), DC, USA,
2021 pp. 359-369.

[3] KCP – Multi-tenancy Kubernetes control plane [Online]. Available:
https://github.com/kcp-dev/kcp (Accessed: July 26, 2022)

[4] Capsule Documentation [Online]. Available: https://capsule.clastix.io/.
Accessed on: July 20, 2022

[5] Kiosk Documentation [Online]. Available: https://github.com/loft-
sh/kiosk. Accessed on: July 20, 2022

[6] Cluster API. Available [Online]: https://github.com/kubernetes-
sigs/cluster-api. Accessed on: July 20, 2022

[7] OpenStack Documentation [Online]. Available:
https://docs.openstack.org/yoga/. Accessed on: August 1, 2022

[8] Ramachandran, L., Narendra, N.C. & Ponnalagu, K. "Dynamic
provisioning in multi-tenant service clouds". SOCA 6, 283–302
(2012)

[9] Verma, M., Gangadharan, G. R., Narendra, N. C., Vadlamani, R.,
Inamdar, V., Ramachandran, "Dynamic resource demand prediction
and allocation in multi-tenant service clouds" in Concurrency And
Computation: Practice And Experience, 28(17), 4429-4442.

[10] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes.
“Cloudscale: elastic resource scaling for multi-tenant cloud systems”.
In Proc. of the 2nd ACM Symposium on Cloud Computing (SOCC).
Cascais, Portugal, 2011

Fig. 5. Pod creation time with different workloads

654

