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Abstract—This paper proposes a new systematic analysis
framework for the LEO satellite networks by focusing on
the orbit geometry. By modeling LEO satellite orbits as
a Poisson line process, we characterize the distribution of
the total length of the visible orbit region observed by the
typical user.

Index Terms—LEO satellites, Stochastic geometry

I. INTRODUCTION

The satellite networks have been widely considered
as the solution to support the global coverage in the
beyond 5G, or 6G era [1]. Especially since low-Earth-
orbit (LEO) satellites provide low latency and high
data rates, understanding the LEO satellite networks is
significant in terms of system parameters to optimize
satellite deployment.

In order to analyze the network performance, stochas-
tic geometry has been widely used to analyze the net-
work performances by spatially averaging the perfor-
mances of wireless networks. Prior works have been
conducted on this mathematical tool to analyze the
LEO satellite networks [2], but the orbit geometry has
not been much considered. In this paper, we focus on
the length of the visible region of orbits by adopting
stochastic geometry.

II. SYSTEM MODEL

This section presents the network model for LEO
satellite networks, highlighting the orbit geometry.

We assume that the Earth is a perfect sphere with
radius rE and each orbit is a circle with radius r where
orbits and the Earth share the same center. rh is the
altitude of the LEO satellites where rh = r − rE.

Since each orbit is on the plane which is a two-
dimensional subspace of the three-dimensional Eu-
clidean space, R3, it is completely characterized by a
normal unit-vector of the plane. So, we can make a one-
to-one correspondence between a satellite orbit and the
normal unit-vector with respect to the plane containing
that orbit as in Figure 1. Let pk be the k-th orbit and
vk be the unit-normal vector which is associated with
pk. Let θk and ϕk be the polar angle and azimuth angle
of vk, i.e., vk = (1, θk, ϕk) in the spherical coordinate
system where θk ∈ [0, π] and ϕk ∈ [0, 2π). So, we
can map an orbit pk to a point xk = (θk, ϕk) in (θ,

ϕ) domain as in Figure 1. We will distribute the set of
points {x} = {x1,x2, . . . ,xN} on the (θ, ϕ) domain
according to a homogeneous Poisson point process (PPP)
with an intensity λ. In other words, N is a Poisson
random variable with mean 2π2λ.

We will consider a user’s observable satellite trajec-
tory and place the user at (0, 0, rE) in the Cartesian
coordinate system without loss of generality. We refer
to this user as the typical user. By assuming users can
observe satellites above the minimum elevation angle ω,
we denote the visible region on the spherical surface
with radius r observed by the typical user by R where

R ={(x, y, z) ∈ R3 :

{x2 + y2 + z2 = r2} ∩ {z > d sinω + rE}}, (1)

and

d = −rE sinω +
√

(rE sinω)2 + 2rErh + r2h (2)

which is the maximum distance between the user at
(0, 0, rE) and R. Equation (2) is obtained by the cosine
law.
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Fig. 1. Illustration of network geometry.

III. VISIBLE TRAJECTORY

In this section, we will analyze the total length of
visible orbits by the user placed at (0, 0, rE).

Let lk be length of the orbit pk passing R, i.e., lk =
|pk ∩R|. By definition, lk is invariant over the azimuth
angle ϕk.
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Lemma 1: The length of orbit pk passing the visible
region R is

lk =

{
l(θk) for |θ − π

2 | ≤ arccos
(
rb
R

)
0 otherwise

, (3)

where

l(θ) = r arccos

(
2r2b

r2 sin2 θ
− 1

)
(4)

and rb = d sinω + rE.
The k-th orbit rk does not pass the visible region R if

θk is not in (π2 − arccos
(
rb
R

)
, π
2 + arccos

(
rb
R

)
). When

rk passes R, lk is obtained by the multiplication of the
radius r and the angle of the arc, rk ∩R.

Since arccos function is a decreasing function, lk is
maximized when the argument is minimized. So, the
maximum lk is obtained as r arccos

(
2r2b
r2 − 1

)
when

θk is π
2 . This result confirms the intuition that when an

orbit passes the zenith of the user, he can observe the
maximum length of that orbit. Also, we can check that
lk is independent of the azimuth angle ϕk.

Now, we will analyze the total length of the observable
trajectory based on Lemma 1. Let l be the total length
of visible orbit which is given by

l =
N∑

k=1

lk (5)

where N is the number of orbits.
Theorem 1: The Laplace transform of l is

Ll(s) = exp

(
−2πλ

∫ π

0

(
1− e−sl(θ)

)
dθ

)
. (6)

The proof comes from the probability generating func-
tional (PGFL) of PPP [3].

The Laplace transform of a random variable is con-
nected to the moments of that random variable. By
leveraging the relation

E[Xn] = (−1)n
dn

dsn
LX(s)

∣∣∣∣
s=0

, (7)

we can obtain the following corollary.
Corollary 1: The mean of l is

E[l] = 2πλ

∫ π

0

l(θ)dθ, (8)

which is obtained by applying (7) to the result of
Theorem 1.

IV. NUMERICAL EXPERIMENTS

Figure 2 illustrates the mean of l obtained in Corol-
lary 1. In this figure, we set RE = 6371(km) and
Rh = 500(km). From this figure, we can observe that
the mean of l is proportional to the orbit density λ. Also,
the mean of l decreases as the minimum elevation angle
ω increases since the area of visible surface R is reduced

by increasing ω. We can check that (8) is well matched
to the simulation results.

Since LEO satellites are located on orbits, the visibil-
ity of satellites highly depends on l. When the visibility
is not secured enough, the typical user will not be served
by any satellite. By investigating the behavior of the
visible orbit lengths, it can be extended to the coverage
analysis of LEO satellite networks.
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Fig. 2. Illustrations of the mean of l under RE = 6371(km), Rh =
500(km).

V. CONCLUSION

This paper analyzed the visible trajectory observed by
the typical user under LEO satellite networks, highlight-
ing the orbit geometry. By modeling the orbit as a Pois-
son line process, we obtain the distribution of the sum
of visible orbit regions. With numerical experiments, we
verified that the analytical expressions are well-matched
with the simulation experiments and provide intuitions
on how network parameters are connected to the visible
regions.
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