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Abstract— The increasing power consumption in servers is a 
problem in data centers. One approach to address this is to 
optimize physical resource allocation for virtualized functions. For 
this approach, power consumption needs to be estimated, and 
many papers have proposed models to estimate server power 
consumption. However, applying such estimation techniques to 
data center servers presents an operational challenge. Specifically, 
it is difficult to reduce the cost of model building and data 
collection while maintaining estimation accuracy. To address this 
problem, we propose a management system with a modeling 
function and a data selection function. The modeling function 
builds accurate models in accordance with application 
requirements, and the data selection function selects data related 
to server power consumption and then instructs data collection to 
each processing server.  Our main effort in this paper was to 
address the monitoring function issue to reduce server power 
consumption during data collection. We analyze the relationship 
between server performance data and server power consumption 
and reduce the type of data. Experimental results showed that our 
selected data are sufficient to construct a server power modeling. 
Furthermore, by limiting the amount of data collected, we were 
able to reduce server power consumption by about 3 W and 
monitoring overhead by about 30%. 

Keywords— server, power consumption, statistical analysis, 
machine learning 

I. INTRODUCTION  
With the spread of big data and cloud computing, the energy 

consumption of data centers has become a problem [1]. Some 
studies have proposed power-aware scheduling algorithms to 
minimize the power consumption for servers in a datacenter 
[2][3]. Their target environment is a service infrastructure that 
executes virtualized functions on servers. Their techniques 
reduce the number of servers used by consolidating virtual 
machines or containers. Thus, their power-aware scheduling 
algorithm requires power consumption information in two 
situations: control judgment by the power consumption 
estimation of the server, and the power consumption of each 
service component. Our target is the former situation. There are 
two ways to monitor server power consumption: a physical 
method using a wattmeter and an estimation method based on 
the power model. A physical method (like a wattmeter) incurs 
operating costs to put the instrument on servers, whereas the 
estimation cost is lower than the physical method cost because 
the power model is constructed using server performance data 

that is collected from a software monitoring tool. For the server 
power modeling, many researchers have proposed models by 
using machine learning [4].  

Our motivation is to apply the server power consumption 
estimation technology to a data center and use an estimation 
value as a control parameter. The data center we envision runs 
multiple different applications. Each server processes a different 
load because virtualization technology enables different 
applications to be installed on the same server.  

There are two possible directions for data center managers 
to use server power estimation techniques. (1) The first direction 
is to build individual models for all servers in the data center and 
estimate power, and (2) the second direction is to build one 
model for all servers in the data center and estimate power. 
However, they have some problems. (1) The first direction 
incurs costs for modeling because a model needs to be built for 
each server. In addition, the accuracy of the model drops when 
the combination of applications changes, so the model needs to 
be rebuilt. Additionally, centralized management is difficult. 
When an estimation model is constructed for each server, the 
input data (explanatory variables) required for each model may 
differ. In such cases, the settings need to be changed to select 
and collect data for each server. (2) The second direction may 
reduce the accuracy of the model. In our envisioned datacenter, 
it is more precise to build a power consumption model for each 
load feature of servers. For example, Weiwei et al. [5] evaluated 
the accuracy of server power estimation by distinguishing four 
types of load: CPU load, memory load, I/O load, and mixed load. 
If a single model is created for all servers in the data center, the 
estimation accuracy of servers with biased load characteristics 
(e.g., I/O intensive workload) is reduced. In addition, collecting 
various data to create a generic model for different load 
characteristics increases the power consumption of the server 
during collection. 

From the perspective of management and operating costs, 
we consider that the second direction is better. However, there 
are two points that need further improvement. The first point is 
the estimation accuracy. Compared with building a model with 
a fixed combination pattern of servers and applications, the 
estimation accuracy of the model is reduced when there are 
many variations in the combination of applications running on 
the server and when the situation changes dynamically. Some 
users who use server power consumption as a metric for scaling 
control or resource utilization calculations require highly 
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accurate estimates. The second point is the power consumption 
for data collection. Ziyu et al. [6] collected a total of 158 data. 
The reason they adopted 158 data for explanatory variables was 
to enhance the versatility. They explained that their method can 
predict the power of the server on other applications by changing 
the relevant training dataset. However, when many types of data 
are collected for various load characteristics, the power 
consumption for data collection increases. 

For each point, we propose the following solutions: For the 
first point, we propose a management system that basically uses 
a single model and builds individual server power models only 
for servers equipped with applications that require high 
estimation accuracy, thereby reducing the number of models to 
be built. For the second point, we identify the data commonly 
needed to estimate the power consumption of servers in the data 
center, and reduce the power consumption of data collection by 
reducing unnecessary data collection. 

Our main contributions are as follows:  

1. We propose a management system for using server 
power estimation technology in data center. This 
management system basically uses a single model and 
builds individual server power models only for servers 
equipped with applications that require high estimation 
accuracy. This management system also has a function 
for reducing server power consumption during data 
collection. For that, we proposed an approach that 
reduces the types of collecting data. 

2. We conducted experiments and show that our approach 
reduced server power consumption by about 3W and 
monitoring overhead by about 30%. 

The main focus of this paper is on efforts to reduce server 
power consumption during data collection and the experimental 
results. The rest of the paper is organized as follows. Chapter II 
describes the our proposed the management system with a new 
function and the approach that reduces types of collecting data. 
Chapter III describes experimental methods to verify the power-
saving effects of the data reduction approach. Results and 
discussion are in Chapter IV. In Chapter V, the related works are 
discussed. Chapter VI presents the conclusion on this work. 

II. METHOD 
In this chapter, we first describe a management system with 

a new function for using power estimation technology in data 
centers (in Section A). Then we describe specific techniques for 
reducing power consumption during data collection in Sections 
B and C. 

A. Management System 
A data center management system generally collects data 

such as CPU utilization from servers that perform 
computational processing and stores the data in a data store. On 
the basis of the collected data, an estimation model is 
constructed, and the estimated results are used as a control 
decision index. Our proposed monitoring system (Fig. 1) adds 
the data selection function (Data Selector in Fig. 1) to the 
conventional system. The data selector selects data relevant to 
server power consumption.  Then the data selector instructs data 

collection to each processing server. The detailed method is 
described in the next section.  

The modeling function (Model Constructor in Fig. 1) builds 
one estimation model for all servers in the data center and 
builds individual estimation models for some servers deploying 
an application that requires high estimation accuracy. To build 
a unique model for an application that requires high estimation 
accuracy, the model constructor uses specific data that are only 
needed to build the model for that application. Thereby, the 
system can meet the needs of applications that require high 
estimation accuracy. Also, the system can reduce modeling 
costs compared with the method that builds individual models 
for all servers.  

The following sections explain how the data selection 
function determines the data to be acquired. The data to be 
selected will be used as explanatory variables (input data) for 
model construction and will be referred to as data or 
explanatory variables in the following text.  

Fig. 1. Overview of the data center management system. 

B. Explanatory variable selection 
The criteria for choosing explanatory variables depend on 

previous studies. There are two approaches for selecting 
variables: qualitative and quantitative. The qualitative approach 
selects variables that are expected to be related to power 
consumption. This approach requires researchers to have expert 
knowledge of server subsystems. The quantitative approach, on 
the other hand, uses methods such as statistical analysis and 
machine learning to select explanatory variables for modeling. 

Examples of the quantitative approaches are as follows. 
Yunfang et al. [7] calculated the Pearson correlation coefficient 
between all collected variables and the power consumption. 
They selected variables with the absolute value of the correlation 
coefficient greater than 0.5. Guang et al. [8] selected variables 
using the stepwise analysis. Bergamaschi and Rigo [9] used the 
correlation-based feature selection (CFS) algorithm proposed by 
Hall et al. [10]. Zhou et al. [11] used the principal component 
analysis (PCA) to reduce dimensionality. 

The purpose of reducing dimensionality and explanatory 
variables in previous works was to improve estimation accuracy. 
On the other hand, we first need to perform an analysis to 
understand the relationship between server power consumption 
and performance data and select performance data that provide 
good estimation accuracy. The methods and its problem are as 
follows: 
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 When examining the correlation of each variable in 
multivariate analysis, the results of the correlation 
coefficient may show a spurious correlation. It is more 
accurate to analyze using the partial correlation 
coefficient, which is a pure correlation coefficient with 
the interaction between variables removed.  

 The stepwise method selects explanatory variables of a 
regression model. If there is multicollinearity between 
explanatory variables that strongly correlated with the 
objective variable, the reliability of the regression 
equation decreases. Thus, it is preferable to always 
select an explanatory variable for the content of 
multicollinearity before applying the stepwise method. 

 CFS [10] selects explanatory variables that strongly 
correlate with the objective variable and weakly 
correlate with the other explanatory variables. This 
method avoids multicollinearity. However, the 
relationship between the explanatory variable and the 
objective variable cannot be analyzed as in multiple 
regression analysis.  

 PCA is commonly used for reducing dimensionality. 
The purpose of PCA is to find the direction in which 
the variance is maximized in high-dimensional data 
and project it into a new subspace with the same or 
lower dimensions as the original dimension. However, 
because our goal is to reduce the original high-
dimensional data itself, this technique is not suitable. 

C. Analytical method 
In this section, we describe our proposed analysis method. 

This method eliminates the effect of multicollinearity by 
performing two-step variable reduction using a partial 
correlation coefficient and a stepwise method and improves the 
accuracy of regression analysis compared with performing a 
stepwise method only. 

The specific procedure is as follows: 

1. Dataset creation 

Excludes the collected performance data that always 
shows a constant value. 

2. Partial correlation coefficient calculation 

Calculate the partial correlation coefficient between the 
performance data and delete one of the pairs with high 
correlation. This suppresses the effect of the 
multicollinearity. 

3. Stepwise method 

Select the optimum combination of regression models 
with the remaining performance data as the explanatory 
variable and power consumption as the objective 
variable by the stepwise method. 

To evaluate our approach, we compared the case of 
collecting all available data with the case of collecting only the 
data selected using our analytical method. We analyzed both 
hardware-provided inputs and operating system (OS)-provided 
inputs as performance data. There are two points to evaluate our 
approach. One is the power estimation accuracy. We evaluated 

whether both data collecting cases are sufficient to build a server 
power estimation model. Another is the power reduction amount. 
We conducted power measurements and evaluated which case 
is more effective for power reduction. 

The next chapter describes the experimental methods. 
However, this paper only reports on the evaluation of the data 
selection method (sections B and C) of the data selector in the 
proposed management system. In order to evaluate the effect of 
the model constructor (section A), it is necessary to construct the 
entire management system, and those are future works. 

III. EXPERIMENT 

A. Experimental setup and workload application 
This experiment was conducted on the rackmount server, 

equipped with 2-socket 2.9GHz Intel Xeon CPU E5-2600 and 
running Ubuntu 18.04 OS. A Docker container for executing 
application processes was started on the server, and the power 
consumption of the server was collected at 1-second intervals 
using the Intelligent Platform Management Interface (IPMI). 
Regarding the collection of performance data, we used Perf [12] 
for hardware-provided inputs and Dstat [13] for OS-provided 
inputs to collect all 146 performance data (events) that can be 
acquired in this experimental environment. Perf and Dstat also 
collected performance data at 1-second intervals the same as 
IPMI. 

We assume that various applications work on servers (Fig. 1 
server group). The data selector should be generic for different 
workloads. Thus we selected the five types of workloads in 
consideration of applications with various processing 
characteristics (TABLE I), and measured server power 
consumption and performance data with two sets of different 
workload combinations. These measurement sets are training 
and test data for machine learning.  Each workload combination 
set is as follows:     

 Training dataset 

Stress-ng (CPU workload option, I/O workload option), 
Stream, Iozone were executed on containers. In total, 
20 patterns of loads were applied, with the number of 
containers changed to 2, 4, 6, 8, and 10. As a load on 
Jitsi-Meet, the number of web conferences and the 
number of participants set five patterns as follows: 20, 
24, 28 and 40 people participated in 1 conferenced 
room, and 4 people participated in each of the 4 
meeting rooms. In addition, mixed workloads set two 
patterns using Stress-ng (CPU load option, I/O load 
option), Stream, Iozone, and Jitsi-Meet. Measurements 
were performed in 27 patterns of the load environment. 
The workload period was five minutes each. 

 Test dataset 

Each application (Stress-ng with CPU workload option, 
Stress-ng with I/O workload option, Stream, Iozone) 
was executed on five containers. In addition, the 
workload simulating a meeting in which 36 people 
participated and the mix workload were executed. 
Measurements were performed in 6 patterns of load 
environment. The workload period was five minutes 
each. 
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TABLE I: Application for each processing characteristic.   

Workload types Application 
CPU intensive Stress-ng1 
Memory intensive Stream2 
I/O intensive Iozone3, Stress-ng 
Network I/O intensive Jitsi-Meet4 

1. https://kernel.ubuntu.com/~cking/stress-ng/ 
2. https://www.cs.virginia.edu/stream/ 
3. https://www.iozone.org/ 
4. https://jitsi.org/jitsi-meet/ 

B. Analysis for data selection 
On the basis of the variable selection method described in 

Chapter II, we analyzed the measurement data (training dataset) 
using statistical software R [14]. 

1. Dataset creation 

We created a dataset by removing events that show the 
same value during whole measurement periods. 

2. Partial correlation coefficient calculation 

We calculated Spearman's partial correlation matrix to 
investigate the correlation. An uncorrelated test was 
performed, variable pairs were selected that had a P-
value < 0.05 and a partial correlation coefficient of 0.5 
or more were selected, and one variable was deleted 
from the dataset. The reason for calculating 
Spearman's partial correlation matrix is that the 
Shapiro-Wilk test on the dataset included events in 
which the distribution of the data did not follow a 
normal distribution. 

3. Stepwise method 

We applied the stepwise method to the remaining 
performance data and power consumption 
measurement results, and adopted events that were 
selected as a partial regression coefficient and P-value 
< 0.05. 

TABLE II shows 52 events selected as a result of the analysis. 

C. Machine learning model 
This section describes the machine learning process to 

evaluate whether selected events (TABLE II) are adequate for 
the estimation. 

The first step is the pretreatment of standardization in which 
the average was 0 and the standard deviation was 1. The second 
step is training using four algorithms: multiple regression 
method, random forest, support vector regression (SVR), and 
neural network (NN). All models were constructed with server 
power consumption as the objective variable and performance 
data as explanatory variables. The last step is the evaluation of 
the model accuracy using the test dataset.  

D. Measurement to evaluate the power reduction effect 
This section describes the measurement method for 

evaluating the power consumption reduction effect. We 
measured the power consumption every second for 15 minutes 
under the following 3 data collecting patterns using the same 

server as at the time of power estimation evaluation. There was 
no workload from applications. 

i. Idle (no data collection) 

ii. Collect all collectable data 

iii. Collect data selected from analysis results 

TABLE II: Selected performance data. 

IV. RESULTS AND DISCUSSION 

A. Estimation accuracy 
This section shows the results of evaluating the impact of 

data reduction on estimation accuracy. Fig. 2 shows the 
distribution of the absolute error of the estimated value and the 
measured value for each learning model. TABLE III shows 
mean absolute error (MAE) and root mean square error (RMSE) 
for each learning model. 

TABLE III: Estimated error of each learning model. 

 

From TABLE III, in multiple regression analysis, random 
forest, and NN, both MAE and RMSE before performance data 
selection are small, but the difference is within 0.5 W. On the 
other hand,  SVR's accuracy after selecting performance data is 
better than the previous one. From Fig. 2, the tendency of 146-
event and 52-event distributions was similar in each model. In 
practice, the model accuracy also is improved by various 
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machine learning techniques such as tuning hyperparameters 
and preprocessing. These results mean that data reduction has 
little impact on estimation accuracy. 

Fig. 2. Absolute error distribution. 

B. Power reduction effect 
This section shows the results of power reduction effect 

experiments in comparison between before and after data 
selection. Fig. 3 shows the results of power consumption 
measurements, which differ in the amount of data collected. In 
this measurement, the power consumed by the server is 
compared in three patterns: 0 collected data, 146 all collectable 
data, and 75 after reducing the collected data. Performance data 
actually selected by data analysis was 52 as shown in TABLE II. 
However, Dstat collected 23 extra data because it is specified 
that multiple data are output with one option. Thus, 75 events 
are collected in this measurement. For instance, idle and wait 
times are required, but Dstat also outputs user, system, and 
interrupt times as CPU time information at the same time. 

From Fig. 3, these experimental results show that the 
difference was 9.8 W between monitoring mode (146 events) 
and idle mode (0 events). This result also means that server 
power consumption overhead increases 6% due to performance 
monitoring. The total power consumption of processing servers 
monitored increases in proportional to the number of servers in 
a system. Furthermore, as the scale of the data center increases, 
the number of processing servers increases. Therefore, data 
collection clearly impacts server power consumption. 

Also, there was a difference in the power consumption 
distribution between 146 and 75 events (Fig. 3). We also 
performed a Wilcoxon rank sum test and found a significant 

difference in the distribution of the two groups. The average 
power consumption of each box was 164.06, 173.85, and 170.63 
W when the data collection amount was 0, 146, and 75, 
respectively. Therefore, there was an about 3 W difference 
before and after reducing the performance data. Compared to 0 
events, the overheads of 146 events and 75 events are 9.79 and 
6.57 W, respectively. These results mean our approach reduced 
monitoring overhead by about 30%. In this experiment, we 
focused on the power reduction effect in the data collection 
phase. This method is actually effective in not only the data 
collection phase but also the real-time estimation calculation 
during operation. Reducing the number of explanatory variables 
also leads to a reduction in the amount of computation in the pre-
processing and training phase of machine learning, hence the 
power reduction effect during those phases can also be expected. 

In the case of power consumption estimation with 75 data 
collection, the accuracy was similar to the 52 events in TABLE 
III. This result means that the effect of this difference on 
estimation accuracy is very low. In addition, it would be possible 
to create a tool to read the necessary information from the proc 
file system, thus avoiding the extra data collection due to the 
Dstat specification, which is future work. 

Fig. 3. Server power consumption distribution. 

V. RELATED WORKS 

A. Explanatory variable 
According to Möbius et al. [15], there are two groups of 

explanatory variables used in previous studies. One is the 
information provided by PMC, and these metrics are referred  to 
as hardware-provided inputs in [15]. The other is the utilization 
of subsystems (for example, CPU, memory, etc.) provided by 
the OS, and these metrics are referred to as OS-provided inputs 
in [15]. 

In addition, the number of explanatory variables also varied 
depending on previous studies. For example, Weiwei et al. [5] 
collected 16 events of OS-provided inputs using the monitoring 
tool of Windows 10. Ziyu et al. [6] collected a total of 158 events 
OS-provided inputs and hardware-provided inputs. The reason 
they adopted 158 events for explanatory variables was to 
enhance the versatility. Their model was based on the black-box 
model that is not dependent on specific applications, and they 
explained that their method can predict the power of the server 
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on other applications by changing the relevant training dataset 
[6]. 

However, as shown in the measurement results in Chapter 
IV, collecting a large amount of data consumes the server power.  
We thought that it would be better to collect the minimum data 
that is really necessary for power estimation. Therefore, we tried 
to clarify the performance data (the explanatory variable) related 
to the server power consumption (the objective variable) by a 
statistical method. 

VI. CONCLUSION 
We proposed a management system to apply server power 

consumption estimation technology to a data center. The 
proposed management system has two functions: a modeling 
function that builds accurate models in accordance with 
application requirements, and a data selection function that 
selects data related to server power consumption and then 
instructs each processing server to collect data. We especially 
worked on reducing the power consumed during server 
monitoring by reducing types of collected data. We narrowed 
down performance data to be collected by statistically analyzing 
the relationship between the performance data and the power 
consumption of the server. Specifically, we searched for a 
combination of variables by a method that combines the partial 
correlation coefficient and the stepwise method.  

To evaluate our analytical method, we estimated the power 
consumption by machine learning and evaluated it on the server 
with the load applied by the five workloads that load each of the 
CPU, memory, I/O, and network I/O. When comparing the 
estimation accuracy before and after selecting performance data 
by the proposed analysis method, MAE and RMSE were within 
0.5 W difference. Besides, we could not observe a performance 
deterioration due to data selection in the absolute error 
distribution. Therefore, we concluded that data reduction has 
little impact on estimation accuracy. Furthermore, as a result of 
measuring and comparing the power consumption during power 
collection before and after reducing the performance data, our 
approach was found to reduce server power consumption by 
about 3 W and monitoring overhead by about 30%. We 
concluded that energy is saved in the server power consumption 
modeling by the analysis method proposed from the estimation 
accuracy and the evaluation results of the power consumption 
reduction effect. 

As a future work, we will work on improving the 
effectiveness of power reduction through data collection 
methods. Also, we plan to construct a demonstration system and 
evaluate it for the model constructor and specific use cases.   
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