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Abstract—Currently, mobile operators are deploying the 5G 
cellular network worldwide. Due to limited coverage and small-
scale deployment, handoffs often occur from 5G to 4G and vice 
versa. These handoffs often lead to significant delays caused by 
retransmissions. Instead of using either 5G or 4G connection, 
simultaneous use of 5G and 4G, i.e., multipath connection, is 
anticipated to yield better performance. In this paper, we 
empirically study the performance of multipath TCP schedulers 
in such a scenario. Through NS3-DCE simulation experiments, 
we investigated the throughput, received SINR, and flow 
completion time for considered schedulers using the default 
Linux setup. We found that the BLEST scheduler shows the best 
performance because of its fast awareness and adaptability 
towards the head of line blocking. 
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I. INTRODUCTION 
The fifth-generation (5G) cellular network has recently 

attracted significant attention. 5G can provide much higher 
bandwidth with ultra-low latency than the fourth generation 
(4G) cellular network [1]. It contains some unique features, 
such as new core network management, new radio 
frequencies, massive MIMO, softwarization, etc. The 5G 
cellular network will soon be deployed worldwide and is 
estimated to bring business worth 13.2 trillion US dollars 
globally [2].  

Currently, 5G has been commercially available on a small 
scale in a handful of countries worldwide. Due to the lack of 
full 5G coverage, frequent handoffs from 5G to 4G and vice 
versa occur for mobile user equipment (UE). This often causes 
packet drops and delays in data delivery. According to 
previous research, the transmission control protocol (TCP) 
suffers greatly from this kind of handoff, often resulting in 
long delays and low throughput compared to regular 
operation. The key reason behind this low performance is the 
spurious retransmission timeouts (RTOs) caused by the 
handoffs [3]. 

With the advancement of modern technology, most of the 
current mobile devices come with multiple communication 
interfaces. Notably, 5G-enabled mobile devices can operate 
under the 4G network too. On the other hand, the mobile 
operators are deploying 5G mostly alongside their existing 4G 
infrastructure. In many cases, even the 5G and 4G antennas 
are installed at the same tower in a non-standalone setup [4], 
as shown in Fig. 1. Moreover, following Qualqum’s proposal 
in [5], instead of using either a 5G or 4G network at a time, 
simultaneous use of both the networks are expected to provide 

a better performance in terms of throughput and help 
overcome the existing problems, especially when the full 
worldwide deployment of 5G network still needs a significant 
amount of time [6]. A considerable study is essential before 
such a large implementation to apprehend the performance 
improvement, possible issues, and implementation of suitable 
protocols. Multipath TCP (MPTCP), a transport layer protocol 
that enables the simultaneous use of multiple communication 
interfaces, is suitable for such scenarios. However, proper 
research on MPTCP is still unavailable considering such 
scenarios. The only available study by Lan et al. gives a simple 
performance analysis of the overall performance of MPTCP. 

Therefore, in this paper, we focus on observing the 
performance of MPTCP schedulers in a scenario where a 
mobile UE is on the move and simultaneously uses both the 
5G and 4G networks via an MPTCP connection. In MPTCP, 
each TCP flow going through the paths between a sender and 
a receiver is considered as a subflow (SF). And an MPTCP 
scheduler is responsible for selecting a suitable SF for sending 
each packet. The key contributions of this work can be listed 
followingly: 

• We set up a simulation testbed integrating NS3-DCE 
[7] with the NS-3.33 mmWave [8] module and 
MPTCP v0.90 [9]. Alongside, we implemented 
schedulers such as Redundant, earliest completion 
first (ECF) [10], and blocking estimation (BLEST) 
[11] for a fruitful comparison. 

• We compared throughput and flow completion time 
(FCT) and found that BLEST performs the best, 
thanks to its intelligent head-of-line (HoL) blocking 
prediction and preventing mechanism. 

The rest of the paper is organized as follows: Section 2 
gives a brief overview of the tested MPTCP schedulers, 
Section 3 details the simulation setup, Section 4 analyzes the 
performance, and Section 5 concludes the paper. 

This research was supported in part by the Basic Science Research 
Program through the National Research Foundation of Korea (NRF) No. 
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Fig. 1. Illustration of the non-standalone 5G implementation model: a 5G 
and 4G base stations are colocated at the same tower. 
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II. OVERVIEW OF THE CONSIDERED SCHEDULERS 
We tested widely accepted five MPTCP schedulers 

implemented in different versions of the MPTCP Linux kernel 
over time. This section gives a summary of the working 
procedure of those schedulers. 

A. Shortest RTT first scheduler (SRTT) 
It sends a packet through an SF with the lowest round-trip-

time (RTT) among all SFs whose congestion window 
(CWND) is not full yet. If more than one path fulfills this 
criterion, the sender systematically chooses one SF and sends 
the packets via that SF until that SF’s CWND becomes full. It 
will again come back to this path once the space CWND space 
becomes available again. It is currently the default scheduler 
in the MPTCP Linux kernel [12].  

B. Round-robin 
It selects an SF in a round-robin fashion. It picks up an SF 

one after the other circularly among all the available SFs 
whose CWND is not full yet [12]. All the SFs have an equal 
probability of being used for sending a packet 

C. Redundant 
The Redundant scheduler sends the same data packets 

through all the available SFs whose CWND is available. This 
approach ensures robustness against packet losses and helps 
reduce HoL-blocking [13]. However, it significantly wastes 
the available resources by putting extra pressure on the 
network to handle the same redundant data by all the network 
interfaces. 

D. Earliest Completion First (ECF) 
It makes a scheduling decision based on the amount of 

available data to be sent, the RTT, and the available CWND 
of an SF. From the sender side, it estimates the arrival time at 
the receiver of the packets to be sent. Then it tries to send in 
such a way that the packets arrive in order and in the shortest 
possible time at the receiver [10]. 

E. Block Estimation (BLEST) 
It aims to reduce the HoL-blocking and thus potentially 

reduce spurious retransmissions. It estimates if an SF is going 
to cause HoL blocking by monitoring the send window and 
RTT, and adapts a scheduling policy to prevent such blocking. 
It mainly pauses sending data packets to avoid HoL blocking 
at the receiver. It waits for the faster SF despite the availability 
of CWND in the slower SFs to prevent HoL blocking [11]. 

III. SIMULATION SCENARIO 
For the simulation testbed, we started by compiling NS3-

DCE [7] in Ubuntu 16.04 LTS [14] kernel in VirtualBox [15]. 
We modified the NS3-DCE default installation to install the 
NS-3.33 instead of the default NS-3.34. Then we replaced the 
contents NS-3.33 folder with the NS-3.33 mmWave module 
[8], modified some files for NS3-DCE compatibility, then 
compiled and configured it to run with NS3-DCE. For the 
Linux Kernel integration, we changed the NS3-DCE 
configuration so that it downloads net-next-libos-4.4.0 with 
MPTCP Linux Kernel v0.90 [9], which is the latest MPTCP 
Linux Kernel compatible with NS3-DCE. We modified the 
Redundant, ECF, and BLEST scheduler’s Linux 
implementation file from the newer version of the MPTCP 
Linux kernels to make them compatible with MPTCP Linux 
Kernel v0.90. Then compiled the kernel and configured it to 

run with NS3-DCE. Finally, we configured NS3-DCE itself 
so that it recognizes the changes.  

After preparing the simulation testbed, we designed a 
simulation scenario where 5G and 4G base stations are located 
at the same tower as shown in Fig. 2. The UE is in a car 
moving from the southeast corner to the southwest corner at a 
60 km/h speed. At the start, there is a line-of-sight connection 
with the eNB and gNB. After some time, a building comes in 
between, causing non-line-of-sight connection. At the end, 
when the car passes the building, again, a line-of-sight 
connection establishes. In this scenario, we run two types of 
simulation experiments. In the first experiment, we start iperf 
data transfer at the beginning and continue for 20 seconds. In 
the second experiment, a fixed 10 Mb of data is sent via iperf 
continuously one after the other, from the start to the end of 
the experiment time of 20 seconds. We used the default Linux 
setup in both experiments except for the schedulers. 

TABLE I. PERFORMANCE OF THE CONSIDERED MPTCP SCHEDULERS IN 
TERMS OF TOTAL SENT DATA AND FLOW COMPLETION TIME (FCT). 

 SRTT Round-
robin 

Redund
ant 

ECF BLESET 

Total 
sent 
(Mb) 

5G 479.1 479.9 464.9 479.8 487.7 

4G 283.5 277.8 471.2 221.2 641.8 

FCT (ms) 27.2 28.4 22.4 31.1 19.7 

IV. PERFORMANCE EVALUATION 
For the first experiment, we observe the received signal to 

interference and noise ratio (SINR) and throughput by the UE. 
As shown in Fig. 3, as the UE moves, even during the non-
line-of-sight connection, the SINR for the 4G network does 
not change much, as the 4G waves can easily penetrate 
through the house. Following the received SINR, the 
throughput does not fluctuate much for the SF using the 4G 
interface. However, the 5G network’s SINR fluctuates a lot as 
it cannot easily penetrate the house. Following the losses in 
SINR, the throughput in the SF using the 5G connection also 
drops rapidly. Interestingly, although there is no change in the 
4G SINR, the throughput of the SF going via 4G interface 
faces some losses in throughput. If we observe closely, this 
can be related to the high packet losses in the 5G SF. The 
severe losses in the 5G SF cause HoL blocking at the receiver, 
causing the 4G SF to stall, resulting in a decreased throughput.  

Table 1 shows the total sent data through each SFs for the 
same experiment. The BLEST scheduler performs the best 
among the considered schedulers as it could successfully 

Server

4G/5G

Building

UE moving 
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Fig. 2. The considered simulation scenario. 
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avoid the HoL blocking. The Redundant scheduler performs 
the second-best as it sends the same data through both the SFs 
to avoid HoL blocking. Interestingly, despite sending the same 
data through both the SFs, the Redundant scheduler’s 
performance is lower than BLEST because the data does not 
arrive at the same time at the receiver due to the difference in 
RTT. And the ECF scheduler performs the worst as it stops 
sending through the 5G SF after some time. We believe that 
the ECF scheduler fails to correctly estimate the packet's 
arrival time at the receiver from the sender side because of the 
continuously changing throughput in the SF going through the 
5G network. This failure causes a fault in ECF and leads it to 
stop the SF through the 5G network.  

Table 1 also shows the second experiment's average FCT. 
As mentioned in the previous section, in this experiment, a 
fixed 10 Mb data is sent repeatedly throughout the 20 seconds 
experiment time. We measured the FCT for each transferred 
data and calculated the average as shown in Table 1.  Similar 
to the previous experiment, BLEST takes the lowest FCT 
compared to the others. And ECF takes the highest FCT. It is 
worth mentioning that when ECF stops the SF going through 
the 5G interface, its FCT reduces significantly. Otherwise, the 
FCT could be much higher. 

V. CONCLUSION

We investigated the behavior of five MPTCP schedulers 
in a scenario where the mobile UE tries to utilize both the 5G 
and 4G networks simultaneously. The results show that the 
BLEST scheduler performs the best among the considered 
MPTCP schedulers. We also found that the HoL blocking is 
the crucial factor that decides the actual performance of the 
schedulers. 

In future work, we will further investigate the behavior of 
the different MPTCP schedulers in combination with other 
MPTCP congestion control algorithms. 
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