
Performance of Multipath TCP Schedulers in
Concurrent Use of 5G and 4G Networks

Imtiaz Mahmud
School of Electronics and Electrical

Engineering
Kyungpook National University

Daegu, Korea
imtiaz.tee@gmail.com

You-Ze Cho
School of Electronics and Electrical

Engineering
Kyungpook National University

Daegu, Korea
yzcho@ee.knu.ac.kr

Abstract—Currently, mobile operators are deploying the 5G
cellular network worldwide. Due to limited coverage and small-
scale deployment, handoffs often occur from 5G to 4G and vice
versa. These handoffs often lead to significant delays caused by
retransmissions. Instead of using either 5G or 4G connection,
simultaneous use of 5G and 4G, i.e., multipath connection, is
anticipated to yield better performance. In this paper, we
empirically study the performance of multipath TCP schedulers
in such a scenario. Through NS3-DCE simulation experiments,
we investigated the throughput, received SINR, and flow
completion time for considered schedulers using the default
Linux setup. We found that the BLEST scheduler shows the best
performance because of its fast awareness and adaptability
towards the head of line blocking.

Keywords—MPTCP, MPTCP Scheduler, 5G, 4G, BLEST,
ECF, Round-robin, Redundant

I. INTRODUCTION
The fifth-generation (5G) cellular network has recently

attracted significant attention. 5G can provide much higher
bandwidth with ultra-low latency than the fourth generation
(4G) cellular network [1]. It contains some unique features,
such as new core network management, new radio
frequencies, massive MIMO, softwarization, etc. The 5G
cellular network will soon be deployed worldwide and is
estimated to bring business worth 13.2 trillion US dollars
globally [2].

Currently, 5G has been commercially available on a small
scale in a handful of countries worldwide. Due to the lack of
full 5G coverage, frequent handoffs from 5G to 4G and vice
versa occur for mobile user equipment (UE). This often causes
packet drops and delays in data delivery. According to
previous research, the transmission control protocol (TCP)
suffers greatly from this kind of handoff, often resulting in
long delays and low throughput compared to regular
operation. The key reason behind this low performance is the
spurious retransmission timeouts (RTOs) caused by the
handoffs [3].

With the advancement of modern technology, most of the
current mobile devices come with multiple communication
interfaces. Notably, 5G-enabled mobile devices can operate
under the 4G network too. On the other hand, the mobile
operators are deploying 5G mostly alongside their existing 4G
infrastructure. In many cases, even the 5G and 4G antennas
are installed at the same tower in a non-standalone setup [4],
as shown in Fig. 1. Moreover, following Qualqum’s proposal
in [5], instead of using either a 5G or 4G network at a time,
simultaneous use of both the networks are expected to provide

a better performance in terms of throughput and help
overcome the existing problems, especially when the full
worldwide deployment of 5G network still needs a significant
amount of time [6]. A considerable study is essential before
such a large implementation to apprehend the performance
improvement, possible issues, and implementation of suitable
protocols. Multipath TCP (MPTCP), a transport layer protocol
that enables the simultaneous use of multiple communication
interfaces, is suitable for such scenarios. However, proper
research on MPTCP is still unavailable considering such
scenarios. The only available study by Lan et al. gives a simple
performance analysis of the overall performance of MPTCP.

Therefore, in this paper, we focus on observing the
performance of MPTCP schedulers in a scenario where a
mobile UE is on the move and simultaneously uses both the
5G and 4G networks via an MPTCP connection. In MPTCP,
each TCP flow going through the paths between a sender and
a receiver is considered as a subflow (SF). And an MPTCP
scheduler is responsible for selecting a suitable SF for sending
each packet. The key contributions of this work can be listed
followingly:

• We set up a simulation testbed integrating NS3-DCE
[7] with the NS-3.33 mmWave [8] module and
MPTCP v0.90 [9]. Alongside, we implemented
schedulers such as Redundant, earliest completion
first (ECF) [10], and blocking estimation (BLEST)
[11] for a fruitful comparison.

• We compared throughput and flow completion time
(FCT) and found that BLEST performs the best,
thanks to its intelligent head-of-line (HoL) blocking
prediction and preventing mechanism.

The rest of the paper is organized as follows: Section 2
gives a brief overview of the tested MPTCP schedulers,
Section 3 details the simulation setup, Section 4 analyzes the
performance, and Section 5 concludes the paper.

This research was supported in part by the Basic Science Research
Program through the National Research Foundation of Korea (NRF) No.
NRF-2018R1A6A1A03025109 and No. NRF-2019R1A2C1006249.

5G

4G

Fig. 1. Illustration of the non-standalone 5G implementation model: a 5G
and 4G base stations are colocated at the same tower.

550978-1-6654-9927-9/22/$31.00 ©2022 IEEE APCC 2022

II. OVERVIEW OF THE CONSIDERED SCHEDULERS
We tested widely accepted five MPTCP schedulers

implemented in different versions of the MPTCP Linux kernel
over time. This section gives a summary of the working
procedure of those schedulers.

A. Shortest RTT first scheduler (SRTT)
It sends a packet through an SF with the lowest round-trip-

time (RTT) among all SFs whose congestion window
(CWND) is not full yet. If more than one path fulfills this
criterion, the sender systematically chooses one SF and sends
the packets via that SF until that SF’s CWND becomes full. It
will again come back to this path once the space CWND space
becomes available again. It is currently the default scheduler
in the MPTCP Linux kernel [12].

B. Round-robin
It selects an SF in a round-robin fashion. It picks up an SF

one after the other circularly among all the available SFs
whose CWND is not full yet [12]. All the SFs have an equal
probability of being used for sending a packet

C. Redundant
The Redundant scheduler sends the same data packets

through all the available SFs whose CWND is available. This
approach ensures robustness against packet losses and helps
reduce HoL-blocking [13]. However, it significantly wastes
the available resources by putting extra pressure on the
network to handle the same redundant data by all the network
interfaces.

D. Earliest Completion First (ECF)
It makes a scheduling decision based on the amount of

available data to be sent, the RTT, and the available CWND
of an SF. From the sender side, it estimates the arrival time at
the receiver of the packets to be sent. Then it tries to send in
such a way that the packets arrive in order and in the shortest
possible time at the receiver [10].

E. Block Estimation (BLEST)
It aims to reduce the HoL-blocking and thus potentially

reduce spurious retransmissions. It estimates if an SF is going
to cause HoL blocking by monitoring the send window and
RTT, and adapts a scheduling policy to prevent such blocking.
It mainly pauses sending data packets to avoid HoL blocking
at the receiver. It waits for the faster SF despite the availability
of CWND in the slower SFs to prevent HoL blocking [11].

III. SIMULATION SCENARIO
For the simulation testbed, we started by compiling NS3-

DCE [7] in Ubuntu 16.04 LTS [14] kernel in VirtualBox [15].
We modified the NS3-DCE default installation to install the
NS-3.33 instead of the default NS-3.34. Then we replaced the
contents NS-3.33 folder with the NS-3.33 mmWave module
[8], modified some files for NS3-DCE compatibility, then
compiled and configured it to run with NS3-DCE. For the
Linux Kernel integration, we changed the NS3-DCE
configuration so that it downloads net-next-libos-4.4.0 with
MPTCP Linux Kernel v0.90 [9], which is the latest MPTCP
Linux Kernel compatible with NS3-DCE. We modified the
Redundant, ECF, and BLEST scheduler’s Linux
implementation file from the newer version of the MPTCP
Linux kernels to make them compatible with MPTCP Linux
Kernel v0.90. Then compiled the kernel and configured it to

run with NS3-DCE. Finally, we configured NS3-DCE itself
so that it recognizes the changes.

After preparing the simulation testbed, we designed a
simulation scenario where 5G and 4G base stations are located
at the same tower as shown in Fig. 2. The UE is in a car
moving from the southeast corner to the southwest corner at a
60 km/h speed. At the start, there is a line-of-sight connection
with the eNB and gNB. After some time, a building comes in
between, causing non-line-of-sight connection. At the end,
when the car passes the building, again, a line-of-sight
connection establishes. In this scenario, we run two types of
simulation experiments. In the first experiment, we start iperf
data transfer at the beginning and continue for 20 seconds. In
the second experiment, a fixed 10 Mb of data is sent via iperf
continuously one after the other, from the start to the end of
the experiment time of 20 seconds. We used the default Linux
setup in both experiments except for the schedulers.

TABLE I. PERFORMANCE OF THE CONSIDERED MPTCP SCHEDULERS IN
TERMS OF TOTAL SENT DATA AND FLOW COMPLETION TIME (FCT).

 SRTT Round-
robin

Redund
ant

ECF BLESET

Total
sent
(Mb)

5G 479.1 479.9 464.9 479.8 487.7

4G 283.5 277.8 471.2 221.2 641.8

FCT (ms) 27.2 28.4 22.4 31.1 19.7

IV. PERFORMANCE EVALUATION
For the first experiment, we observe the received signal to

interference and noise ratio (SINR) and throughput by the UE.
As shown in Fig. 3, as the UE moves, even during the non-
line-of-sight connection, the SINR for the 4G network does
not change much, as the 4G waves can easily penetrate
through the house. Following the received SINR, the
throughput does not fluctuate much for the SF using the 4G
interface. However, the 5G network’s SINR fluctuates a lot as
it cannot easily penetrate the house. Following the losses in
SINR, the throughput in the SF using the 5G connection also
drops rapidly. Interestingly, although there is no change in the
4G SINR, the throughput of the SF going via 4G interface
faces some losses in throughput. If we observe closely, this
can be related to the high packet losses in the 5G SF. The
severe losses in the 5G SF cause HoL blocking at the receiver,
causing the 4G SF to stall, resulting in a decreased throughput.

Table 1 shows the total sent data through each SFs for the
same experiment. The BLEST scheduler performs the best
among the considered schedulers as it could successfully

Server

4G/5G

Building

UE moving
in a car

Fig. 2. The considered simulation scenario.

551

avoid the HoL blocking. The Redundant scheduler performs
the second-best as it sends the same data through both the SFs
to avoid HoL blocking. Interestingly, despite sending the same
data through both the SFs, the Redundant scheduler’s
performance is lower than BLEST because the data does not
arrive at the same time at the receiver due to the difference in
RTT. And the ECF scheduler performs the worst as it stops
sending through the 5G SF after some time. We believe that
the ECF scheduler fails to correctly estimate the packet's
arrival time at the receiver from the sender side because of the
continuously changing throughput in the SF going through the
5G network. This failure causes a fault in ECF and leads it to
stop the SF through the 5G network.

Table 1 also shows the second experiment's average FCT.
As mentioned in the previous section, in this experiment, a
fixed 10 Mb data is sent repeatedly throughout the 20 seconds
experiment time. We measured the FCT for each transferred
data and calculated the average as shown in Table 1. Similar
to the previous experiment, BLEST takes the lowest FCT
compared to the others. And ECF takes the highest FCT. It is
worth mentioning that when ECF stops the SF going through
the 5G interface, its FCT reduces significantly. Otherwise, the
FCT could be much higher.

V. CONCLUSION

We investigated the behavior of five MPTCP schedulers
in a scenario where the mobile UE tries to utilize both the 5G
and 4G networks simultaneously. The results show that the
BLEST scheduler performs the best among the considered
MPTCP schedulers. We also found that the HoL blocking is
the crucial factor that decides the actual performance of the
schedulers.

In future work, we will further investigate the behavior of
the different MPTCP schedulers in combination with other
MPTCP congestion control algorithms.

ACKNOWLEDGMENT
This research was supported in part by the Basic Science

Research Program through the National Research Foundation
of Korea (NRF), funded by the Ministry of Education (No.
NRF-2018R1A6A1A03025109), and by the National
Research Foundation of Korea (NRF) grant funded by the
Korean government (No. NRF-2019R1A2C1006249).

REFERENCES
[1] L. Ding, Y. Tian, T. Liu, Z. Wei, and X. Zhang, "Understanding

commercial 5G and its implications to (Multipath) TCP," Computer
Networks, vol. 198, p. 108401, 2021.

[2] M. Series, "Minimum requirements related to technical performance
for IMT-2020 radio interface(s)," Radiocommunication Sector of ITU
(ITU-R)2017.

[3] L. Li et al., "A longitudinal measurement study of TCP performance
and behavior in 3G/4G networks over high speed rails," IEEE/ACM
transactions on networking, vol. 25, no. 4, pp. 2195-2208, 2017.

[4] H. Ekström, "Non-Standalone and Standalone: Two Standards-Based
Paths to 5G," ed: Ericsson, 2019.

[5] D. P. Malladi. (2019, 03 AUG 2022). Key breakthroughs to drive a
fast and smooth transition to 5G standalone. Available:
https://www.qualcomm.com/news/onq/2019/08/key-breakthroughs-
drive-fast-and-smooth-transition-5g-standalone

[6] S. Ahmadi, 5G NR: Architecture, technology, implementation, and
operation of 3GPP new radio standards. Academic Press, 2019.

[7] H. Tazaki et al., "Direct code execution: Revisiting library os
architecture for reproducible network experiments," in Proceedings
of the ninth ACM conference on Emerging networking experiments
and technologies, 2013, pp. 217-228.

[8] M. Mezzavilla et al., "End-to-end simulation of 5G mmWave
networks," vol. 20, no. 3, pp. 2237-2263, 2018.

[9] R. Lübben and J. Morgenroth, "An odd couple: Loss-based
congestion control and minimum RTT scheduling in MPTCP," in

Fig. 3. Performance of the considered MPTCP schedulers: (a) received SINR and (b) throughput for SRTT, (c) received SINR and (d) throughput for round-
robin, (e) received SINR and (f) throughput for redundant, (g) received SINR and (h) throughput for ECF, and (i) received SINR and (j) throughput for BLEST.

552

2019 IEEE 44th Conference on Local Computer Networks (LCN),
2019, pp. 300-307: IEEE.

[10] Y.-s. Lim, E. M. Nahum, D. Towsley, and R. J. Gibbens, "ECF: An
MPTCP path scheduler to manage heterogeneous paths," in
Proceedings of the 13th international conference on emerging
networking experiments and technologies, 2017, pp. 147-159.

[11] S. Ferlin, Ö. Alay, O. Mehani, and R. Boreli, "BLEST: Blocking
estimation-based MPTCP scheduler for heterogeneous networks," in
2016 IFIP Networking Conference (IFIP Networking) and
Workshops, 2016, pp. 431-439: IEEE.

[12] B. Arzani, A. Gurney, S. Cheng, R. Guerin, and B. T. Loo, "Impact
of path characteristics and scheduling policies on MPTCP

performance," in 2014 28th International Conference on Advanced
Information Networking and Applications Workshops, 2014, pp. 743-
748: IEEE.

[13] B. Felix, I. Steuck, A. Santos, S. Secci, and M. Nogueira, "Redundant
packet scheduling by uncorrelated paths in heterogeneous wireless
networks," in 2018 IEEE Symposium on Computers and
Communications (ISCC), 2018, pp. 00498-00503: IEEE.

[14] R. Khalili, N. Gast, and M. Popovic, "Opportunistic linked-increases
congestion control algorithm for MPTCP," BCP 78-79, 2013.

[15] F. Kelly and T. Voice. (2005) Stability of end-to-end algorithms for
joint routing and rate control. ACM SIGCOMM Computer
Communication Review. 5-12.

553

