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Abstract—Despite significant improvement in human pose
estimation research, most top-performance methods are chal-
lenging to deploy in practical applications because of their
complex architecture and high computational costs. Although
the lightweight human pose estimation approach requires less
processing and may be deployed on devices with low resources,
such as mobile phones or robots, its network model performance
is not exceptional. In this paper, we design the structure based
on High-Resolution Network (HRNet), and propose a High-
Resolution and Global Context Network (HRGCNet) based on
the attention mechanism. Our approach redesigns the bottleneck
block according to the attention mechanism of the Global
Context Network (GCNet). By combining lightweight and high-
performance GC blocks with bottleneck blocks, HRGCNet adds
global context features at each location in the high-resolution
subnet. The resulting high-resolution representation contains
richer feature information. Our experiments on the COCO
train2017 dataset show the efficiency of our method. Compared
to HRNet with state-of-the-art performance, HRGCNet achieves
higher accuracy, and the AP score improves by 2.0 percentage
points with similar model size (#Params) and computational
complexity (FLOPs). On the COCO test-dev set, HRGCNet has
an AP score of 78.3, which is better than most current methods
with good performance.

Index Terms—Human pose estimation, HRNet, GCNet, depth-
wise separable convolution

I. INTRODUCTION

Human pose estimation refers to labeling the position of
joint human points in a picture or video and optimally con-
necting them. It has become a popular research direction of
computer vision, with applications in motion recognition [1],
human-computer interaction [2], and auto-drive [3]. Due to the
diversity of human pose, the complexity of the surroundings,
and the ambiguity of the perspective, human pose estimation
faces great obstacles.

Recently, the deep convolution neural network has sig-
nificantly improved human pose estimation. For example,
HRNet [4] learns to get reliable high-resolution heatmaps by
concurrently connecting multi-resolution subnetworks and per-
forming multi-scale fusion repeatedly. Using multi-resolution
supervised training and multi-resolution aggregation inference,
HigherHRNet [5] can solve the scale change problem in
bottom-up pose estimation. In addition, with the significant im-
provement of attention mechanisms in target detection, image
classification, etc., it has achieved good results in human pose
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Fig. 1. The architecture of the proposed HRGCNet

estimation. For example, Li [6] proposed a regression-based
pose recognition method using a cascade transformer, which
uses the encoder-decoder structure in transformers to perform
regression-based pedestrian and keypoint detection, revealing
the recursive self-attention mechanism in the transformer. Xu
[7] first proposed a simple baseline model ViTPose based
on vision transformer structure. The model only uses vision
transformer structure as encoder and a few deconvolution
layers as decoder, which can achieve good performance in
human pose estimation tasks.

However, most advanced approaches have complex architec-
tures with numerous parameters and floating-point computa-
tions. Although these methods achieve the best performance,
they require much memory because of these models’ large
number of parameters. On the other hand, due to numerous
floating-point operations, they are time-consuming during the
training phase. In addition, to deploy the trained network
to devices with limited resources, such as mobile phones or
robots, there is an increasing demand for a network of human
pose estimation with fewer parameters, less computation, and
high accuracy. For example, Osokin [8] proposed Lightweight
OpenPose based on OpenPose. Compared with the second-
order OpenPose, the parameter amount is only 15%, but the
performance is similar. Yu [9] proposed a Lightweight High-
Resolution Network (Lite-HRNet) and applied the efficient
ShuffleNet block in ShuffleNet to HRNet. Zhang [10] pre-
sented a Lightweight Pose Network (LPN) and redesigned
the network model based on SimpleBaseline architecture with
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deep convolution and attention mechanism. These networks
have the advantages of small model size and less floating-point
computation. They can be deployed in practical applications,
but their accuracy is not comparable to the most advanced
methods.

In this work, we focus on how to improve the performance
of the human pose estimation network model without increas-
ing the computation cost. The contributions of this paper are
as follows.

• Based on a new attention mechanism, we combine GC
block with bottleneck block and apply it to HRNet. We
introduce an attention mechanism, which adds global
context features to each location of the high-resolution
feature map and obtains HRGCnet.

• We add depthwise separable convolutions to ensure the
capture of spatial information and the fusion of informa-
tion across channels.

• Experiments show that our algorithm has more advan-
tages, the AP score of HRGCNet can reach 78.3 on the
COCO test development set, which is significantly better
than the high-resolution network HRFormer with SOTA
performance.

II. RELATED WORK

A. Human pose estimation

The deep learning model shows better performance than
the traditional methods in human pose estimation. For exam-
ple, they use deep convolution neural networks (DCNNs) to
anticipate keypoints in the human body [11], [12]. He [13]
uses a feedforward connection approach to ensure that the
back-propagation gradient is maintained, allowing the network
layers to continue deeper. Simonyan [14] extracts the network
with Visual Geometry Group Network (VGGNet) as the fea-
ture and uses a multi-scale feature cascade to compensate for
the loss of feature information during the pooling procedure.

Bottom-up approach. The bottom-up method groups all
body joints into corresponding individuals in one image. Xiao
[15] added some deconvolution layers to ResNet in order to
create a simple and effective structure for generating heatmaps
for high-resolution representation while also reducing the
algorithm’s complexity. Cao [16] presented Openpose and
used a nonparametric representation method of Part Affinity
Fields (PAFs) to learn to associate the target object with the
body keypoints, reducing the calculation time. The multi-
person pose estimation methods can be divided into top-down
and bottom-up.

Top-down approach. The top-down method first detects
everyone in the image, then estimates everyone’s pose using
the single-person pose estimation method. G-RMI [17] esti-
mates pose by locating critical body points based on activation
heatmap and replaces box-level scores with confidence score
estimates based on critical points to avoid repeated pose detec-
tion. Mask R-CNN [18] estimates the pose of the human body
by generating one-hot masks, but it cannot handle problems
such as obscured key points, invisible keypoints, and crowded
backgrounds.

However, most existing methods recover high-resolution
representations from low-resolution representations. Sun [4]
proposed HRNet to learn reliable high-resolution heatmaps
by concurrently connecting multi-resolution subnetworks and
performing repetitive multi-scale fusion. In addition to target
detection and semantics segmentation, a high-resolution net
demonstrates high test accuracy. As a consequence, we use
HRNet as our benchmark network and improve its human pose
estimation performance.

B. Attention mechanism

In recent years, attention mechanism plays an increasingly
important role in computer vision, such as semantic segmenta-
tion [19], face recognition [20], motion recognition [21], and
so on. The attention mechanism originates from the study of
human vision. When people look at things, they selectively
focus on the part of the whole information while ignoring
other visible information. Based on this attention mechanism,
there are two main contents: one is to determine which part
of the input information needs more attention, and the other
is to extract the features of critical parts to get important
information.

Chu [22] applied the attention mechanism to the human pose
estimation model for the first time and proposed a method
to integrate convolutional neural networks with the context
attention mechanism into an end-to-end framework. Wang
[23] proposed a Non-Local Network (NLNet) that uses self-
attention to model pairwise relationships at the pixel level to
capture long-term dependencies. It improves the performance
of human pose estimation, but non-local operations in NL-
Net learn query-independent attention maps for each query
location, which results in computational overhead. Hu [24]
presented a new architecture unit called the Squeeze-Excitation
(SE) module, which scales different channels to rebalance
channel dependency and the global context. These blocks can
be stacked together to form a SENet architecture, which can
significantly improve model performance with a slight increase
in computing costs.

Through rigorous empirical analysis, Cao [25] found that
the global context of NLNet modeling is almost the same for
different query locations in the image. They designed a better
instantiation, called GC block, and then built a global context
network, which can effectively model the global context by
adding fusion. As a consequence, it is applied to bottleneck
blocks of the high-resolution network HRNet, which can
increase network capacity without putting too much compu-
tational strain on the system and improve model performance
by increasing global context characteristics for each location
in the high-resolution signature graph.

III. APPROACH

A. HRNet

Previously, the high-resolution network for mainstream key-
point detection consisted of a series of connected high-to-low-
resolution subnets, which output high-resolution representa-
tions through an up-sampling operation. Such networks do
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Fig. 2. Architecture of the main blocks. (a) Standard Bottleneck Block in ResNet. (b) Lightweight Bottleneck with GC Block. The redesigned Lightweight
Bottleneck Block after two modifications. Note that M and N in these blocks denote the number of output channels of a convolutional layer. (c) Global
Context Block, which is lightweight and can effectively model long-range dependency.

not fully compensate for the loss of information in spatial
resolution due to up-sampling operations, resulting in the
low spatial sensitivity of the high-resolution representations
of the final output. It is primarily limited by the resolution
of the semantically expressive representation. There are also
high-resolution networks that connect subnets of different
resolutions in parallel, but there is no multi-scale infor-
mation exchange between subnets. And the high-resolution
representation of the final output is only obtained from the
original high-resolution representation after a few convolution
operations, resulting in the high-resolution representation of
the network’s final output providing only low-level semantic
representation.

HRNet is different from these two types of high-resolution
networks. Throughout the process, HRNet maintains high-
resolution representations. It keeps high-resolution representa-
tions throughout the network by connecting subnetworks from
high to low at the same time. It also performs multi-scale
fusion consistently, resulting in more accurate heatmaps.

HRNet starts with two 3 × 3 convolutions, reduces the
resolution to a quarter of the original, then regresses the
heatmaps at that resolution. There are four phases to the high-
resolution subnetwork. A high-resolution subnetwork is part of
the initial phase. The subsequent three phases gradually reduce
the high-resolution subnetwork’s resolution until it reaches
the low-resolution subnetwork. While the number of channels
doubles, the resolution falls. Each phase connects subnetworks
with varying resolutions in parallel and repeatedly performs in-
formation fusion at various scales. Finally, the high-resolution
output heatmap predicts the location of significant locations.

HRNet has two distinct advantages over other networks for
pose estimation: (i) Instead of serial connections to high-to-
low-resolution subnets, as most existing systems do, parallel
connections are used, allowing the high resolution to be pre-
served rather than restored through a low-to-high procedure.
(ii) Lower and higher representations are combined in most

existing fusion schemes. Instead, HRNet uses recurrent multi-
scale fusion, which improves high-resolution representations
by combining low-resolution representations of the same depth
and related levels, allowing high-resolution representations to
be used for pose assessment.

B. Global Context Block

Cao [25] proposed a new global context modeling frame-
work instance called global context block. It has the advan-
tages of a simplified non-local block, which can effectively
model long-distance dependencies, and squeeze-excitation
block, which can perform lightweight computing. They use
NLNet to abstract the general framework for global context
modeling: (a) Global attention pool, which gets attention
weights using 1x1 convolution Wk and Softmax functions,
then uses attention pool to gain global context features.
(b) Feature transformation through 1x1 convolution Wv . (c)
Feature aggregation, which aggregates global context features
into features at each place by using addition. The general
framework can be written as follows

zi = F

(
xi, δ

(∑Np

j=1
αjxj

))
(1)

where Np is the number of positions in the feature map,
x = {xi}

Np

i=1 denotes the feature map of one input instance,∑
j αjxj denotes context modeling by grouping the charac-

teristics of all locations together by weighted averaging of
weighting αj to get a global attention pool in a simplified
NL (SNL) block, δ (·) denotes a feature transformation used
to capture channel correlation, F (·, ·) is a fusion function
representing features that aggregate global context features
into each location.

The author finds that SE block is actually an example of
this context modeling framework. For SE blocks, αj = 1

Np
,

δ (·) is a 1x1 convolution, a ReLU, a 1x1 convolution, and a
sigmoid function, F (·, ·) multiplies the corresponding channel
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broadcasts. Finally, the detailed architecture of the global
context (GC) block is shown in Figure 2 (c), and its formula
is defined as

zi = xi +Wv2ReLU


LN


Wv1

Np
j=1

αjxj




 (2)

where Wv1, Wv1 denote linear transform matrices, and αj is
the weight of the global attention pool, it is defined as

αj =
eWkxj

Np
m=1

eWkxm

(3)

where Wk denotes a linear transform matrice, and δ(·) is the
bottleneck transform, it’s defined as

δ(·) = Wv2ReLU (LN (Wv1 (·))) (4)

Figure 2 (c) shows the details of the GC block. Although
SE block is an instantiation of the Global Context Modeling
Framework, there is a difference. SE block strengthens impor-
tant channels, weakens less important ones, and manipulates
attention on channels. In contrast, GC blocks add a global
context to each position rather than manipulating attention on
positions.

C. HRNet with Global Context Block

HRNet can output more reliable high-resolution representa-
tions than other human pose estimates, allowing it to predict
heatmaps more accurately in space. However, the architec-
ture of HRNet is complex, and its high memory and time-
consuming requirements make it more challenging to improve
the model’s performance without increasing the computing
costs. Cao [25] noticed that the thermograms of attention for
different query points were almost identical, indicating that
although non-local solves the problem of long-distance depen-
dence through self-attention, experiments show that attention
maps are not dependent on the location of the query. That is,
they have not learned attention.

GCNet combines the benefits of both NLN and SE blocks,
allowing them to successfully simulate long-distance depen-
dency, obtain global context information, and be used for
lightweight computing. Therefore, we combine lightweight,
high-performance GC blocks with bottleneck blocks. As
shown in Figure 2 (a), a bottleneck block consists of three
convolutional layers and a shortcut connection. Figure 2 (b)
and (c) show the architecture of bottleneck blocks with GC
blocks and the details of GC blocks, respectively.

As shown in Figure 1, the horizontal and vertical directions
correspond to the network’s depth and the feature map’s scale,
respectively. Like HRNet, our HRGCNet consists of parallel
high-resolution to low-resolution subnets and performs repet-
itive information exchange between multi-resolution subnets.
However, the difference is that we add lightweight GC blocks
between high-resolution subnets. We apply a Bottleneck block
with a lightweight GC block to a high-resolution subnet of

HRNet to increase network capacity without increasing com-
putation costs. In addition, by adding global context features to
each location of the high-resolution signature map, the high-
resolution representation of the final output contains richer
feature information, which improves the performance of the
model.

IV. EXPERIMENTS

A. Setting

COCO keypoint detection. COCO datasets contain more
than 200K images and 250K instances marked with 17 key
points. The COCO train2017 dataset, which contains 57K
pictures and 150K personal instances, was used to train our
model. The val2017 and test-dev2017 episodes, each with
5K and 20K photos, were used to evaluate our technique. A
statistic for evaluating anything. Object Keypoint Similarity
(OKS) is the standard evaluation metric

OKS =


i exp

�
−d2i /2S

2k2i

σ (vi > 0)

i σ (vi > 0)
(5)

where di is the Euclidean distance between the detected
key point and its corresponding ground true value, vi is the
visibility marker off the ground true value, S is the object
proportion, and ki is the constant of each key point controlling
the attenuation. We used standard accuracy and recall rates
to represent test results: AP (average detection accuracy
at OKS = 0.50, 0.55, 0.60, ..., 0.90, 0.95), AP 50 (detection
accuracy at OKS = 0.50), AP 75, APM for medium-scale
targets, APL for large-scale targets, AR for average recall at
OKS = 0.50, 0.55, ..., 0.90, 0.95.

Training. The images of the COCO dataset are adjusted to
256 × 192 or 388 × 284, and some images are randomly rotated
[45◦, 45◦], scaled randomly [0.65, 1.35], or flipped to expand
the additional data of the coco dataset. The primary learning
rate was set at 1e-3 and decreased tenfold in the 170th and
200th epochs, respectively, until it finally ended in the 210th
epoch.

Test. We detect people instances through a person detector
and then predict keypoints, where the person detectors for
both the validation set and the test set are SimpleBaseline.
As a general practice, we obtain heatmaps by averaging the
predicted heatmaps of the original and flipped images. Apply a
quarter offset in the direction from the highest response to the
second-highest response to obtain each critical point location.

B. Results

1) COCO validation: Table I shows our comparison with
other advanced methods. At the same time, Figure 3 shows
the comparisons of the AP scores, GLOPs, and params of
HRGCNet on the COCO val set with these top-level per-
formance methods mentioned in Table I. The input size of
the model is 256 × 192, and the bubble size indicates the
number of model parameters. According to the width of the
high-resolution subnet and the input size of the image in the
last three stages, we have four different versions of HRGCNet.
Our small network, HRGCNet-W32, is trained with 256 × 192
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TABLE I
COMPARISONS OF RESULTS ON COCO VALIDATION SET. #PARAMS AND FLOPS ARE CALCULATED ONLY FOR THE POSE ESTIMATION NETWORK.

Method Backbone Input size #Params FLOPs AP AP 50 AP 75 APM APL AR

CPN [26] ResNet-50 256 × 192 27.0M 6.2G 68.6 - - - - -
CPN+OHKM [26] ResNet-50 256 × 192 27.0M 6.2G 39.4 - - - - -
SimpleBaseline [15] ResNet-50 256 × 192 34.0M 8.9G 70.4 88.6 78.3 67.1 77.2 76.3
SimpleBaseline [15] ResNet-101 256 × 192 53.0M 12.4G 71.4 89.3 79.3 68.1 78.1 77.1
SimpleBaseline [15] ResNet-152 256 × 192 68.6M 15.7G 72.0 89.3 79.8 68.7 81.9 77.8
HRNet-W32 [4] HRNet-W32 256 × 192 28.5M 7.1G 74.4 90.5 81.9 70.8 81.0 79.8
HRNet-W48 [4] HRNet-W48 256 × 192 63.6M 14.6G 75.1 90.6 82.2 71.5 81.8 80.4
TransPose-H-A6 [27] HRNet-W48 256 × 192 17.5M 21.8G 75.8 - - - - 80.8
TokenPose-L/D24 [28] HRNet-W48 256 × 192 27.5M 11G 75.8 90.3 82.5 72.3 82.7 80.9
HRFormer-B [29] HRFormer 256 × 192 43.2M 12.2G 75.6 90.8 82.8 71.7 82.6 80.8

SimpleBaseline [15] ResNet-152 384 × 288 68.6M 35.6G 74.3 89.6 81.1 70.5 79.7 79.7
HRNet-W32 [4] HRNet-W32 384 × 288 28.5M 16G 75.8 90.6 82.7 71.9 82.8 81.0
HRNet-W48 [4] HRNet-W48 384 × 288 63.6M 32.9G 76.3 90.8 82.9 72.3 83.4 81.2

HRGCNet-W32(ours) HRGCNet 256 × 192 29.6M 7.11G 76.6 93.6 84.6 73.9 80.7 79.3
HRGCNet-W48(ours) HRGCNet 256 × 192 64.6M 14.6G 77.4 93.6 84.8 74.6 81.7 80.1
HRGCNet-W32(ours) HRGCNet 384 × 288 29.6M 16.1G 78.0 93.6 84.8 75.0 82.6 80.5
HRGCNet-W48(ours) HRGCNet 384 × 288 64.6M 32.9G 78.4 93.6 85.8 75.3 83.5 81.3

TABLE II
COMPARISONS ON THE COCO TEST-DEV SET. #PARAMS AND FLOPS ARE CALCULATED ONLY FOR THE POSE ESTIMATION NETWORK.

Method Backbone Input size #Params FLOPs AP AP50 AP75 APM APL AR

Mask-RCNN [18] ResNet-50 - - - 63.1 87.3 68.7 57.8 71.4 -
G-RMI [17] ResNet-101 353 × 257 42.6M 57.0G 64.9 85.5 71.3 62.3 70.0 69.7
SimpleBaseline [15] ResNet-50 256 × 192 34.0M 8.9G 70.0 90.9 77.9 66.8 75.8 75.6
SimpleBaseline [15] ResNet-152 256 × 192 68.6M 15.7G 71.6 91.2 80.1 68.7 77.2 77.3
CFN [30] - - - - 72.6 86.1 69.7 78.3 64.1 -
TransPose-H-A6 [27] HRNet-W48 256 × 192 17.5M 21.8G 75.0 82.2 82.3 71.3 81.1 -
TokenPose-L/D24 [28] HRNet-W48 256 × 192 29.8M 22.1G 75.9 92.3 83.4 72.2 82.1 80.8

SimpleBaseline [15] ResNet-152 384 × 288 68.6M 35.6G 73.7 91.9 81.1 70.3 80.0 79.0
HRNet-W32 [4] HRNet-W32 384 × 288 28.5M 16.0G 74.9 92.5 82.8 71.3 80.9 80.1
HRNet-W48 [4] HRNet-W48 384 × 288 63.6M 32.9G 75.5 92.5 83.3 71.9 81.5 80.5
HRFormer-B [29] HRFormer 384 × 288 43.2M 26.8G 76.2 92.7 83.8 72.5 82.3 81.2

HRGCNet-W32(ours) HRGCNet 384 × 288 29.6M 16.1G 77.9 93.6 84.8 74.8 82.9 80.6
HRGCNet-W48(ours) HRGCNet 384 × 288 64.6M 32.9G 78.3 93.6 85.7 75.3 83.5 81.2

input size and obtains 76.6 AP parameters, which is superior
to other methods with the same input size. (i) Compared
with HRFormer-B, our computational complexity is high, but
the gain is 1.8%. (ii) Compared with the TransPose-H-A6
and TokenPose-L/D24, AP has achieved 1.1% gain, but our
GFLOPs are smaller than TransPose-H-A6. (iii) Compared
with previous HRNet with the best performance, when the
model sizes (#Params) and GFLOPs are similar, AP with input
sizes of 256 × 192 for HRNe-w32 and HRNe-w48 increased
by 2.2% and 2.3% respectively.

HRGCNet-w32 and HRGCNet-w48 with input size of 384
× 288 get AP scores of 77.8 and 78.4. Compared with HRNet-
w32 and HRNet-w48 with input size of 384 × 288, our net-
work has increased AP by 2.2% and 2.1%, respectively. At the
same time, our network’s number of parameters and GFLOPs
have not increased much. Our network model increases the

AP score by 1.2 compared to HRFormer. We believe that
our HRGCNet can achieve better results by utilizing UDP or
DARK schemes.

2) COCO test-dev: Table II shows a comparison of our
pose estimation performance with existing methods. Our net-
work model achieves 78.3 AP accuracy. Compared with HR-
Net, it does not increase much in model size or computational
complexity but gains at least 1.3 gains. On the other hand,
our small network model gains 1.4 compared to TransPose-H-
A6, and our extensive network model gains 2.1 compared to
HRFormer-B.

V. CONCLUSION

In this paper, we apply a combination of Bottleneck Blocks
with the lightweight GC block to the high-resolution subnet of
HRNet. It adds a global context to each location of the feature
map, enriches the feature information in the high-resolution
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feature map, and improves model accuracy without increasing
computational costs. Experiments in the COCO validation set
show that the AP score is improved by 2.1 compared to HRNet
when the number of parameters and computation are equal.
Our method also yields good results on COCO train2017
datasets compared to those with the best performance.
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