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Abstract—Software-defined networks (SDN)-based industrial
cyber-physical systems (CPS) enable customizing development
opportunities with integrated network interconnection to perform
monitoring, measurement, control system, and security tasks. The
extensive connectivity and the vast amount of data exchange in
the SDN-based industrial CPS environment make it vulnerable
to cyberattacks. Furthermore, an SDN controller is a single
attractive target for an attack. It is challenging when the SDN
controller manages DL-based high-complexity intrusion detection
in an IIoT network with low latency requirements to identify
and prevent attacks. This study proposes a lightweight intrusion
detection model in an SDN-based industrial CPS environment.
The proposed model was evaluated using a recent publicly SDN-
related cyber-security InSDN dataset. The experimental results
show that the proposed model outperforms the state-of-the-art
by achieving 98.95% accuracy, 99.00% precision, 98.91% recall,
and a 0.164 ms time cost when using the LightGBM feature
selection technique.

Index Terms—lightweight IDS, SDN, industrial CPS, feature
selection

I. INTRODUCTION

The industrial internet of things (IIoT) is a massively dis-
tributed network connecting sensors and actuators to generate
tremendous amounts of data with sensing, communication,
and computing capabilities. Massive data generated over the
networks can be efficiently analyzed, collected, and exchanged
in an IIoT environment. IIoT applications have advanced to
increase effectiveness and productivity in several sectors, such
as manufacturing, healthcare, smart cities, retail, supply chain,
automotive, and transportation [1]. IIoT utilizes cyber-physical
systems (CPS) to address the complex architecture of physical
entities and remotely connect them via cyber-components.
CPS enables an integrated network interconnection to perform
monitoring, measurement, control system, and security tasks.
Therefore, CPS supports integrated computing, physical pro-
cessing, and intelligent networking capabilities [2].

Industrial CPS requires new specifications related to hetero-
geneity and flexibility without reducing the quality of service
(QoS). Software-defined networks (SDN) provide emerging re-
quirements for heterogeneous entities with different protocols
that allow customizing development opportunities [3]. SDN
separates the application, control, and data planes. The SDN
controller communicates with the application using the north-
bound interface and the south-bound interface with network

devices in the data plane [4]. SDN provides a framework for
a security solution to quickly and precisely identify threats
without wearing down IIoT equipment like firewalls, antivirus
software, and intrusion detection systems (IDS).

The extensive connectivity and the vast amount of data ex-
change in the SDN-based industrial CPS environment make it
vulnerable to cyberattacks. Furthermore, an SDN controller is
a single attractive target for an attack. A distributed denial-of-
service (DDoS) attack can disrupt, cause a failure, and restrict
the communication channel between the control and the data
planes. The dynamic nature of IIoT devices raises security
issues such as denial of service (DoS), botnet malware, probe
scan, web attacks, and various other kinds of attacks [5] [6].

An IDS platform tries to detect malicious activities in the
networks, which is a challenging issue in IIoT networks.
Machine learning (ML) and deep learning (DL) have advanced
for intrusion detection and classification tasks. However, an
SDN controller in SDN-based IIoT networks is a central device
that handles all network services such as flow management,
network management, network monitoring, intrusion detec-
tion, and load balancing services. It is challenging when the
SDN controller manages DL-based high-complexity intrusion
detection in an IIoT network with low latency requirements.
Moreover, IDS must be able to identify attacks as rapidly
as feasible and need low computing power to identify and
prevent attacks [7] [8]. Moreover, heterogeneous connections
lead to a sharp increase in intrusion threats with sophisticated
capabilities in IIoT networks. The robustness of the IDS model
is a need that cannot be disputed by increasing and more
sophisticated cyber-attacks.

The significant contributions of this study are summarized
as follows.

• We implemented a feature selection mechanism by lever-
aging an ML classifier such as extremely randomized
trees (Extra Trees), extreme gradient boosting (XGBoost),
and a light gradient boosting algorithm (LightGBM) to
determine important features. Selected promising features
can reduce model complexity and improve intrusion
model performance.

• We evaluated the accuracy, precision, recall, loss, ROC
score, and time cost of the feature selection strategies’
performance. LightGBM was used to reduce feature
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dimensions while maintaining high accuracy and low
computational cost.

• We proposed a lightweight CNN-GRU model to classify
the cyber-attacks in SDN-based industrial CPS. This
model applied a residual connection to improve training
model performance and resolve the gradient vanishing
problem. A factorized convolution architecture was ex-
ploited to conduct a lightweight model structure.

II. RELATED WORKS

Several approaches have been proposed and evaluated using
DL-based lightweight intrusion detection models to address
limited computing capabilities in the internet of things (IoT)
networks. The authors [9] proposed a CNN-based deep neural
network intrusion detection model by applying the principal
component analysis (PCA) to reduce feature dimensions. Be-
sides, this model was built by exploiting an inverse residual
connection, channel shuffle operation, compression, and ex-
pansion structure to get low computational cost and effective
feature extraction. Applying feature dimensions reducing al-
gorithm will reduce some promising features and effects for
model performance. In 5G networks, wireless intrusion detec-
tion systems are implemented to combat malicious activities.
The authors [10] proposed a deep auto-encoded dense for
detecting intrusion in 5G and IoT networks. The model was
evaluated with the Argean Wi-Fi intrusion dataset.

The authors [11] implemented a lightweight CNN-LSTM-
based intrusion detection for security in IIoT. This model uses
the UNSW-NB15 dataset to evaluate the proposed model’s
performance. This model did not consider the feature selection
mechanism, so the model has a high computational cost
and is unpracticable for low-latency intrusion detection and
prevention applications. The authors [12] evaluated an ML-
based SVM for intrusion detection in IoT networks. The pro-
posed model achieved 98.03% accuracy for the CICIDS2017
dataset in the binary classification case. Intrusion detection
capability is still not enough for recent cyber-attacks. In recent
sophisticated attacks, IDS requires an intrusion classification
capability to determine a defense mechanism.

Combining ML/DL with feature selection can reduce the
computational cost with improved model performance. The
authors [13] performed a decision tree (DT) model with
a Pearson’s correlation coefficient (PCC) feature selection
mechanism to detect malicious traffic in a SCADA-based
smart factory. A PCC technique was required to ensure the
reduction of over-fitting. The model was evaluated using two
public datasets: CIRA-CIC-DoHBrw-2000 and the NSL-KDD
dataset. The best accuracy was achieved at 99.2% for intrusion
detection cases. The authors [14] applied an ensemble feature
selection technique by combining two ensemble algorithms:
random forest and AdaBoost, to boost the detection accu-
racy. This model achieved reduced training time and better
accuracy. DDoS detection and classification in B5G networks
were performed in [15] using composite multilayer perceptron
(MLP) and PCC feature selection techniques. The proposed
model was evaluated using the CICDDoS2019 dataset and

achieved 99.66% accuracy. The authors [16] exploited ML
algorithms: REP Tree, random tree, decision stump, J48 or
C4.5, and random forest. The model was evaluated using the
CICIDS2017 and CICDDoS2019 datasets and performed with
SYN and UDP attacks, at 99.99% and 99.7%, respectively. A
lightweight DL-based IDS was implemented by authors [17]
for DDoS calssification in SDN-enabled IIoT networks. This
approach exploits the ML classifier to choose the potential
features. However, this work didn’t use an SDN-related dataset
to evaluate the proposed model.

III. INTRUSION DETECTION IN SDN-BASED INDUSTRIAL
CPS

Heterogenous connectivity in SDN-based industrial CPS
networks is vulnerable to cyber-attacks. Furthermore, the SDN
controller is the center of the network flow management,
making it susceptible to being distributed by an unauthorized
user or malicious network activities. This study proposes a DL-
assisted intrusion identification framework with a lightweight
architecture model. Fig. 1 shows the overall the proposed
model. The SDN network architecture is separated into the
application, control, and data planes. These application plane
services include flow management, network monitoring, and
balancing. The application plane communicates with the con-
trol plane through northbound interfaces (NBI). The proposed
DL model was implemented in the SDN controller to classify
cyber-attacks. The network traffic from the data plane was
captured by the SDN controller as the input to the intrusion
classification model. The control and data plane are connected
using southbound interfaces (SBI). The proposed DL model
can classify malicious activities such as DDoS, Probes, DoS,
and brute-force-attack (BFA) attacks.

A. Dataset Description, Preprocessing and Feature Selection

This system utilized the SDN-related cyber-security InSDN
dataset [5] to evaluate the proposed intrusion classification
model. The InSDN dataset enables some cyber-attacks using
OpenFlow protocols in the SDN architecture. The InSDN
dataset provides some attacks such as DoS, DDoS, web
attacks, remote to local (R2L), malware (botnet), probe, and
user to root (U2R) attacks. This study considers four types of
attacks (DoS, DDoS, Probe, BFA) and benign network activity.

Preprocessing was necessary to ensure excellent data quality
before delivering the proposed model with the data features.
This stage performs some procedures such as data cleaning and
feature data normalization. In the data cleaning process, some
non-contributing features (such as ”Timestamp”, ”Flow ID”,
”Src IP”, ”Dst IP”, ”SrcPort”, and ”Dst Port”) were eliminated.
Furthermore, based on [5] through OpenFlow calls to the SDN
switches, only statistical features may be generated from the
SDN controller. In the InSDN dataset, forty-eight features are
related to SDN networks and can be used for the feature
selection mechanism. To prevent large variations in values
across the features, this approach uses MinMax normalization
based on Equation 1.
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Fig. 1. Intrusion Identification in SDN-based CPS

Xn =
X −Xmin

Xmax −Xmin
, (1)

where Xn denotes the normalized data features with val-
ues ranging from [0,1]. This approach implemented an ML
classifier-based feature selection mechanism (extra trees, xg-
boost, and lightGBM) to reduce feature dimension and select
promising features to reduce model complexity and improve
model performance.

B. Lightweight CNN-GRU-based Intrusion Identification

This section presents a lightweight CNN-GRU-based in-
trusion identification model. The proposed model consists of
three main parts: pre-block, depth-wiseConv, and classification
modules. The pre-block was conducted by stacked (1× 3)
and (3× 3) convolution with an eight kernel size and ReLU
activation. The depth-wiseConv module exploited residual
connections to resolve the gradient vanishing problem and
implement a factorized convolution architecture to conduct
a lightweight model structure. The model utilized the two
stacked depth-wiseConv structures for extracting features and
the stacked GRU for attack classification.

The feature map pre-block output is directly fed to the
depth-wiseConv module. Subsequently, deep feature maps
are generated by (1× 3) and (3× 1) factorized convolution
structures for a deep feature calculation. A depth-wise con-
catenation layer is used to aggregate the deep asynchronous

TABLE I
PARAMETERS SETTING OF THE PROPOSED MODEL

Parameters Value
Total Features (SDN-related) 48
Selected Features 30
Number of class 5
Cross Validation 5 k-fold
Activation Function ReLU
Epoch 50
Batch Size 32
Optimizer Adam
Learning rate 0.001
Loss Function Cross-entropy

TABLE II
LIGHTGBM FS PERFORMANCE WITH DIFFERENT NUMBER OF A

FEATURE FOR INTRUSION IDENTIFICATION

Number
of Feature Accuracy Precision Recall Loss Time-cost

10 98.88% 97.91% 97.86% 0.0604 0.302 ms
15 98.92% 98.94% 98.91% 0.0334 0.153 ms
20 98.80% 98.84% 98.76% 0.0406 0.126 ms
25 98.32% 98.36% 98.28% 0.0561 0.157 ms
30 98.98% 98.99% 98.96% 0.0275 0.164 ms

feature maps. The concatenation layer computation is shown
below:

Fconcat = D
(
Xf

(1×3)

(
X(1×3)

)
, Xf

(3×1)

(
X(1×3)

))
, (2)

where D represents the depth-wise concatenation’s calculation,
Xf

(1×3), and Xf
(3×1) represent the output of the factorized

function for the parallel convolution layer with kernel sizes
of (1× 3) and (3× 1). The X(1×3) as the input of factorized
block denotes the output of convolution layer with kernel size
of (1× 3). The dimension of concatenation output is reduced
by feeding to the max-pooling layer with pool size (2, 2) as
follow:

Fpool = P(2,2) (Fconcat) . (3)

here, Fpool denotes as the output of the max-pooling layer.
Subsequently, the reduced feature map is fed to the (1× 1)
convolution layer and is added to the stacked convolution
and pooling layer as a skip connection function. This process
is conducted two times, and the last output is fed to the
average pooling layer. Two stacked GRU layers with ReLU
activation calculate the average pooling output. The output of
the GRU layer is fed to the fully-connected and softmax layers
to identify the cyber attacks.

Table I presents the proposed model’s optimal parameter set-
tings. The model performs excellent results using the following
configurations: employed thirty selected subsets, k-fold cross
validation of 5, ReLU activation function, mini batch-size of
8, Adam optimizer, a learning rate of 0.001, and applying a
cross-entropy loss function.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

This section evaluates the ML classifier-based extra-tress,
xgboost, and lightGBM feature selection techniques to assist
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Fig. 2. Lightweight CNN-GRU-based Intrusion Identification Model

TABLE III
FEATURE SELECTION PERFORMANCE FOR INTRUSION IDENTIFICATION

FS Technique Cyber Attacks Classification Accuracy Average
Accuracy Precision Recall Loss Average ROC

Score Time-costBenign DDoS Probe DoS BFA
Extra Tree 97.71% 99.99% 97.31% 99.02% 95.68% 98.60% 98.62% 98.60% 0.0441 0.9589 0.165 ms
XGBOOST 97.87% 99.97% 97.98% 99.49% 92.51% 98.89% 98.92% 98.86% 0.0330 0.9715 0.181 ms
LightGBM 97.97% 100.00% 98.50% 99.08% 80.95% 98.95% 99.00% 98.91% 0.0318 0.9872 0.164 ms

(a) (b) (c)

Fig. 3. Confusion matrix score for some FS techniques: (a) Extra Trees, (b) XGBoost, (c) LightGBM

(a) (b) (c)

Fig. 4. ROC score for some FS techniques: (a) Extra Trees, (b) XGBoost, (c) LightGBM

a lightweight CNN-GRU-based model for intrusion classifi-
cation. Table II shows the lightGBM FS performance with

different numbers of features. We used some selected features
such as 10, 15, 20, 25, and 30 and compared them to find the

613



TABLE IV
COMPARISON OF INTRUSION IDENTIFICATION WITH DIFFERENT MODELS

Model Accuracy Loss Time-cost Trainable
Parameters

CNN [6] 98.86% 0.0377 0.149 ms 109,437
LSTM [6] 97.64% 0.0532 2.996 ms 55,775
GRU [6] 98.24% 0.0432 3.292 ms 126,623
CNN-LSTM [8] 95.95% 0.1265 0.244 ms 57,798
Proposed Model 98.95% 0.0318 0.164 ms 5,115

best result. The proposed model achieved great results with an
accuracy of 98.95%, a precision of 99.00%, a recall of 98.91%,
a ROC score of 0.9872, a loss of 0.0318, and a computation
cost of 0.109 ms when using 30 subset features. Fig. 3 provides
the confusion matrices of extra trees, xgboost, and lightGBM
techniques. LightGBM FS can classify 13, 448 benign, 24, 380
DDoS, 19, 192 probe, 10, 759 DoS, and 204 BFA attack
samples from 13, 768 benign, 24, 387 DDoS, 19, 435 probe,
10, 833 DoS, and 280 BFA attack testing samples, respectively.
Based on these results, the proposed model with lightGBM FS
performs superior capabilities to identify cyber-attacks with a
high detection rate.

Fig. 4 shows the ROC AUC score for extra trees, xg-
boost, and lightGBM FS techniques. Combining lightGBM
and CNN-GRU-based proposed model outperforms other tech-
niques, with an average ROC AUC score of 0.9672. The ROC
AUC scores for each class are 0.9858 for benign, 0.9999
for DDoS, 0.9908 for probe, 0.9957 for DoS, and 0.8639
for BFA attack. Table IV presents the FS performance when
using 30 promising selected features. The results show that the
lightGBM FS outperforms other ML classifier-based FS tech-
niques (extra-trees and xgboost FS techniques) for intrusion
identification tasks. The lightGBM FS technique achieved an
accuracy of 97.97% for benign, 100.00% for DDoS, 98.50%
for probe, 99.08% for DoS, and 80.95% for BFA attacks,
respectively. Table 5 presents a comparison of intrusion iden-
tification with different models. The measurement results
show that the existing CNN, LSTM, GRU, and CNN-LSTM
models achieved an accuracy of 98.86%, 97.64%, 98.24%,
and 98.74%, respectively. The proposed model outperforms
benchmark models by achieving an accuracy of 98.95%, a
loss of 0.0318, and a computation cost of 0.164 ms.

V. CONCLUSION

This study evaluates the lightGBM FS technique to as-
sist with lightweight intrusion identification in SDN-based
industrial CPS. The model employed three main modules:
pre-block, depth-wiseConv, and stacked GRU. The depth-
wiseConv module utilized a residual connection to improve
training model performance and resolve the gradient vanishing
problem. Furthermore, a factorized convolution architecture
was exploited to conduct a lightweight model structure. The
proposed model outperforms benchmark models by achieving
an accuracy of 98.95%, a loss of 0.0318, and a computation
cost of 0.227 ms.
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