
RQGPR: Rational Quadratic Gaussian Process
Regression for Attack Detection in the SCADA

Networks
Love Allen Chijioke Ahakonye, Cosmas Ifeanyi Nwakanma †, Jae Min Lee, Dong-Seong Kim

IT Convergence Engineering, † ICT Convergence Research Center,
Kumoh National Institute of Technology Gumi, South Korea
loveahakonye, cosmas.ifeanyi, ljmpaul, dskim@kumoh.ac.kr

Abstract—The constant development and deployment of the
supervisory control and data acquisition (SCADA) in the indus-
trial internet of things (IIoT) have enabled vast communication
leading to the generation of large volumes of sensor data. This
phenomenon has increased SCADA’s susceptibility to vulnerability
and attacks which calls for attack detection mechanisms. Existing
systems only aim at detection accuracy without considering the
effect of false alarm rates in large sensor data. To resolve this issue,
we propose a Rational Quadratic Gaussian Process Regression
(RQGPR) for the effective reduction of false alarm rate and
improved prediction precision. In this algorithm, a Gaussian
process regression model is trained with recourse to kernel
functions to precisely predict attacks and reduce false alarms. The
RQGPR outperforms all other kernels in the reduction of false
alarm rates. Through simulations, we show that the proposed
model reduces the false alarm rate up to 71.73% higher than
other kernels. This result was validated by evaluating the CIRA-
CIC-DoHBrw-2020 datasets, which also had a reduction rate of
67.61%. In addition, it also showed superior performance when
compared with other state-of-the-art models.

Index Terms—Intrusion/attack Detection, Gaussian Kernels,
Machine Learning, Network Communication, Rational Quadratic,
Reliability, SCADA, Smart Factory Communication

I. INTRODUCTION

The supervisory control and data acquisition (SCADA) sys-
tems are control systems in the industrial environment, such as
electrical power grids, oil and gas pipelines, water distribution,
e.t.c. This technology allow automated control and remote
monitoring of industrial processes [1]. Components that enable
this functions include computer workstations, human-machine
interface (HMI), programmable logic controllers (PLCs), sen-
sors, and actuators [2]. Initially, these systems were standalone
with dedicated networks. However, due to the widespread
adoption of remote management, the internet is now used for
SCADA system communication [3], [4]. It exposed SCADA
systems to cyberspace, making them vulnerable to cyber-
attacks. Fig. 1 depicts the SCADA equipment communications
network.

The SCADA network communication involves diverse ele-
ments that necessitate safeguarding against vulnerability and
attacks. These incorporate the control relays, sensors, remote
terminal units, master units, and the entire network [2], as

Fig. 1. Diagram showing the components of the SCADA

depicted in Fig. 2. Security is crucial in the development
of a SCADA network. Most SCADA systems have shown
to be deficient in this aspect, leaving systems vulnerable to
intrusion and attacks [3]. Security should be capable of limiting
intrusion/attack to systems and network devices, requiring at
minimum approved access to vital structures. Furthermore,
a cohesive security framework must meet the authorization,
accountability, dependability, and authentication requirements.
It is also crucial to consider the security provided by a sturdy
framework like attack detection systems.

Considering the improved user experience in the industrial
internet of things (IIoT), the application of SCADA systems
in the Smart factory has accelerated [5], leading to a vast
generation of heterogeneous sensor data. This development has
also exposed the SCADA network to vulnerability and attacks
following the unrelenting efforts of intruders. Machine learning
(ML) approaches have found use in SCADA IDS. Most of
these approaches aim to maximize detection accuracy with
little attention to false alarm rates. The Gaussian regression,
Gaussian ratios, and Gaussian process (GP) have enabled the
control of intrusion and vulnerability problems [6], [7]. Recent
studies centered on probability density functions, covariance
functions, predicting target data rate [8], and significance of
common complicated Gaussian ratios viz mathematical intri-
cacy [9]. Regardless of the growing research interests in the
SCADA vulnerability and IDS, there is still minor awareness
in studies targeting Gaussian kernels to minimize false alarm
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Fig. 2. Diagram showing a SCADA Network Communication Architecture

rates with improved prediction accuracy.
The problems of high false alarm rates and poor model

performance have intensified the interest in GP research with
recourse to kernel choice [10], [11] as GP kernels are concerned
with several properties relevant to model fitting. Authors [12]
proposed a boosted Gaussian fusion estimation scheme to de-
termine the constraints of the function of the video monitoring
system that requires improved speed for effective framework
design. According to [11], they proposed a framework of a
Gaussian neural network for online evaluation and restructuring
of cyber-attacks launched on a networked system. These cur-
rent studies did not accentuate the option of kernels. Hence,
Gaussian kernels lack attention as being vital to the control
of false alarm rates in SCADA network communication with
large heterogeneous data. This study asserts that the choice of
kernel is crucial in employing GP in attack detection since
it influences the model performance, particularly prediction
accuracy and false alarm reduction.

Due to limited studies in SCADA security problems with
kernel choice, this study focus on the crucial function of
kernels and their influence on the reduction of false alarm
rates and improved prediction accuracy. In the context of cyber-
security data, GPR employs the layered Gaussian distribution
for prediction in dynamic data that is difficult to generate using
multivariate or linear regression [6]. GPR techniques typically

seek to use what are known as covariance (kernels) activities
to tailor a GP to specific traits. The various kernel is concerned
with diverse attributes applicable to model fitting. In a scenario
of implementing kernel function, there is the probability of
arithmetical summation of kernel functions. The option of a
suitable kernel function in a modeling process based on data
features is a decisive fundamental to enable the control of the
misleading effect of false alarm rates in large IIoT data. As
well as improving the overall model efficiency.

This paper has the following goals:

1) To deduce and propose an efficient GPR kernel in terms
of the mean absolute error (MAE) value for reducing
false alarm rates.

2) Using ML (MATLAB toolbox) to determine the most
appropriate Gaussian process kernels for attack detection
in SCADA network.

3) As a result of its resiliency, choosing kernel is a challenge
in GPR design. The constraint structure of the kernel
must be chosen with skill. This study strives to aid in
resolving this obstacle by putting forward the rational
quadratic kernel.

The rest of the study is organized thus: Section II sum-
marizes existing work on attack detection and alternative GP
techniques, as well as identifying research gaps. In Section III,
problem formulation was explored, which included a brief
description of GPR and the role of kernels. The performance
evaluation is described in Section IV with the efficacy of the
various kernels and a comparison of the response graph and
the effectiveness measure of the various kernels, followed by
the conclusion in Section V.

II. RELATED WORKS

A. SCADA Attack Detection applying Gaussian Process Re-
gression

Several studies on artificial intelligence have promoted vary-
ing applications; and improved achievements in IDS devel-
opment. Substantiated by the implementation of ML/DL ap-
proaches [13], requiring focus in the target domain [14], [15].
Additionally, GPR has also found utilization for control in
evaluating random linear arrays in IoT network intrusion [16].
GPR will enable efficient attack prediction in the SCADA
network. Amidst the application of deep neural network for
IDS is its application in the classification of anomalies based
on the features of network traffic and nature of elements of the
network [15].

A couple of studies have implemented the GP in attack
detection; a study considering a stochastic kernel and utilizing
the kernel variability to avoid assumptions in predictions,
authors [17] proposed a variational Bayesian kernel selection
technique for sparse GPR (SGPR) models. A study by [18]
presented a hybrid model that blends Gaussian distribution
and polynomial regression; the model was for detecting and
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visualizing anomalous activity in electricity consumption. An-
other study on the attack pattern prediction approach built on
bag representation in time series using the Gaussian mixture
model is by [19]. The authors in [20] considered a series of
major disturbing technologies for the beyond-5-G (B5G) in
large industrial networks. It claimed that these technologies
would lead to an inventive switch in the design of B5G base
stations. The authors opined that to exploit the advantage of
this invention in the future, a study in optimizing constrained
resources and security is needed, which is where GP kernels
find use.

Authors in [21] utilized four (4) GPR frameworks to demon-
strate the efficiency of GPR in wireless sensors attack detection
without consideration for computation cost. Specifically, the
squared exponential kernel was in the three GPR models.
However, the study did not establish the impact of other kernels
as indicated in [7]. Authors [13] in a recent study attempted
GPR kernel selection with a focus on IoT. Regardless of the
contributions of these authors. There is little awareness of
the use of GPR and the choice of kernels in the SCADA
network communication attack detection. Thus, this study is a
comparable research focused on the option of GPR kernels and
their performance utilizing IIoT datasets. However, leveraging
cyber-security datasets, this study investigates the impact of
GPR kernels and their efficiency in high-dimensional spaces
(datasets with higher features). In addition to the future di-
rection of authors [13], which bothers on the doggedness of
kernels across state-of-the-art datasets.

III. METHODOLOGY

The schematic diagram of the study process is in Fig. 3.
Several GPR kernels were explored in this study for an optimal
choice in SCADA network communication attack detection,
leveraging the industrial control system (ICS-SCADA) cyber-
security datasets [22], for an efficient kernel candidate. The
dataset created from the power grid testbed consists of compu-
tations associated with disturbance, normal, control, and cyber-
attack exploits obtained during electrical transmission. This
dataset contains 128 features and two (2) responses (normal
and attack traffic). Data preprocessing was to achieve good
quality data before model training. It entails cleansing, sample
selecting, standardization, one hot encoding, and transforma-
tion.

Of the 128 features of the ICS-SCADA dataset, there are
negatively correlated features, zeros, and nan. These features
need to be eliminated. The principal component analysis (PCA)
for dimensionality reduction was adopted to achieve this elim-
ination, reducing it from 128 to 74. The resultant data was
divided into a ratio of 70% (train) and 30% (test), and 20%
from the train set for validation. Models degrade with high-
dimensional data. Hence to build a simple and more compre-
hensible model and improve performance, feature selection is
vital [23].

Furthermore, the CIRA-CIC-DoHBrw-2020 cyber-security
dataset [24], [25] was used to test and validate the reliability
and applicability of the proposed model in a different network
scenario. However, unlike the ICS-SCADA, the CIRA-CIC-
DoHBrw-2020 dataset does not contain redundant features like
negatively uncorrelated features, zeros, and nan, and needless
to implement PCA. Finally, the resultant data was for attack
detection.

A. DNS Traffic Dataset for Validating Model Reliability

The CIRA-CIC-DoHBrw-2020 is a recent cyber-security
dataset with features as listed in [24], [25]. The choice of
this dataset stems from its high volume, which is one of the
limitations that affect the efficiency of GPR performance. The
cyber-security data stream contains 226406 observations, 28
predictors, and two (2) responses as malicious and benign
scenarios. Some predictors include the number of flow bytes
sent, packet length, packet time, and rate of flow bytes sent.

B. Gaussian Process Regression Model

The ML design mechanism in this study is the GPR
prediction employing MATLAB training toolbox. The GPR
implements structural design and precisely as an output model
training function. It is for finding models within the data [26].
The GPR outcome a is premised as a constitute y with data d
as shown in equation (1):

a = y(d) + ε. (1)

where ε denotes the level of noise expression as well as a
simulation of the observed volatility. The “salient” expression
y(d) is assigned to a Gaussian Process (GP) and represented
as (2):

y(d) ∼ [GP (M(d), λ(d, d′))]. (2)

A GP is a multi-role allotment that is represented by a
covariance function and an average. The mean function M(d)
observes the supposed operation standard at data q in equa-
tion (3):

M(d) = ϵ[y(d)]. (3)

This is the estimated mean of all functions in the allocation at
data d. In most cases, the previous average function is put into
equation (4)

M(d) = 0. (4)

as a means to avert exorbitant rearward calculations and only
carry out conclusions through the covariance function, fixing
the previous average outcome to zero is attained by deducting
the preceding average across entire allotments. The covariance
function k(d, d’) patterns the reliance amongst the function
codes at diverse data points d and d’ as shown in equation (5):

λ(d, d′) =
∑

[(y(d)−M(d))(y(d′)− (Md′))]. (5)

The kernel of the Gaussian process is the function k [27].
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Fig. 3. The Cyber-security dataset input flow diagram, GPR modeling and application, and classification outcome in the form of Benign and Malicious

The RQGPR is an endless sum of radial basis function
kernels with varying characteristic length scales. A length gives
it (l > 0) and mixture (α > 0) scale parameters, which
allows the modeling of data at varying multiple scales [27].
The preference for the RQGPR is due to its ability to model
extensive data varying at multiple scales, distinguishing it from
other compared kernels. This function is given by:

k(ai, aj) =

(
1 +

d(ai, aj)
2

2αl2

)−α

. (6)

where l is the length scale, α is the scale mixture parameter
and d(ai, aj) is the Euclidean distance sum of two functions
(input and output).

The learning configurations of the benchmark ICS-SCADA
dataset is presented in Table I. For a comprehensive discourse
on GPR and application see [27]

TABLE I
DATA LEARNING CONFIGURATION WITH THE ICS-SCADA DATASET

Configuration Input
Observations 4615 samples

No of Features Before PCA 128
No of Features After PCA 74

Response 2
Model type Quadratic GPR

Result Presentation type Response plot
Prediction speed 11000 obs/sec

Training time 167 sec
Kernel Sigma Automatic

Optimize numeric parameters True
Kernel Scale Automatic

Use isotropic kernel True
Standardize True

Basis Function Linear
Kernel Function Rational Quadratic

Sigma Automatic
K-fold Validation 5

IV. EXPERIMENTAL RESULT DISCUSSION

A. Investigating the Performance of Proposed Kernel

Performance evaluation of the proposed RQGPR was demon-
strated on two datasets for the SCADA network attack clas-
sification using the benchmark ICS-SCADA cyber-security
datasets [22], and the CIRA-CIC-DoHBrw-2020 dataset [25]
respectively. Repeating the performance evaluation on the

TABLE II
PROPOSED MODEL KERNEL VALIDATION PARAMETER USING THE

CIRA-CIC- DOHBRW-2020 DATASET

Parameter Remark
Observations 226406 samples

Predictors 12
Response 2

Model type Quadratic GPR
Result Presentation type Response plot

Prediction speed 260 obs/sec
Training time 24360 sec
Kernel Sigma Automatic

Optimize numeric parameters True
Kernel Scale Automatic

Use isotropic kernel True
Standardize True

Basis Function Linear
Kernel Function Rational Quadratic

Sigma Automatic
K-fold Validation 5

CIRA-CIC-DoHBrw-2020 is important as the dataset contains
recent attack types from DNS tunnelling. The consistency in
the superior performance of the proposed model further lends
credibility and thus reliable. The CIRA-CIC-DoHBrw-2020
dataset parameters is in Table II.

B. Efficiency Evaluation

The performance analysis guides in this investigation are the
root means squared error (RMSE), MAE, and R-Squared (R2).
It is represented as the variation in the true outcome and trained
outcome and derived as

MAE =
1

N

N∑
i=1

[Xi − Pi]
2. (7)

where Xi denotes the exact value and Pi represents expected
value. MAE determines the degree of proximity between the
true and forecast values. The closer the true and anticipated
values are, the lower the MAE value. MAE is a common ap-
proach to determining a model’s flaw or efficiency in predicting
measurable facts. There are multiple kernels in GPR, including
Matern 5/2 (MGPR), rational quadratic (RQGPR), exponential
(EGPR), and squared exponential (SEGPR) [13]. The viability
of the kernels was verified by applying the MAE. It is a method
of examining the preciseness of ML techniques in minimizing
false alarm and enhanced model prediction.
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Table III presents the level of accuracy of the different GPR
kernels analyzed. Following the investigation, the result shows
that RQGPR decreases MAE by 71.73% and surpasses other
kernels like MGPR (17.02%), EGPR (14.46%), and SEGPR
(0.00%) the baseline.

TABLE III
MODEL EFFECTIVENESS ANALYSIS AND VALIDATION

Dataset GPR Models MAE Reduction Rate

CIRA-CIC-
DoHBrw-2020

RQGPR 0.57734 67.61%
EGPR 0.63017 63.10%
MGPR 0.76502 51.56%
SEGPR 1.1697 0.00%

ICS-SCADA
cybersecurity
dataset

RQGPR 0.053081 71.73%
MGPR 0.15604 17.02%
EGPR 0.16086 14.46%

SEGPR 0.18805 0.00%

Compared to other kernels, the MAE of the proposed
RQGPR is the lowest, as evidenced in Fig. 4. It indicates
that the RQGPR supports improved prediction accuracy and
reduction of false alarm rate. The summarized equations (3),
(4) and (5) of the covariance function is analyzed and verified
that the rational quadratic kernel, when applied in prediction
as proffered, is most suitable and dependable for predictions.

Fig. 4. This is the performance graph of the proposed RQGPR showing it
having the best MAE and R-Squared result in comparison to other kernels.
Note the least error rate.

C. Comparison of some ML Algorithms to the Performance of
the GPR

This section compares the GPR’s accuracy to other regres-
sors, such as ML techniques. Some related articles include the
k-nearest neighbor (KNN), neural network (NN), random forest
(RF), fine tree (FT), coarse tree (CT), medium tree (MT) and
support vector machine (SVM) methods. For more facts on
GPR, toolbox, and coding model, see [27]. In addition the
superior performance of the proposed RQGPR over other GP
candidates, Fig. 5 further shows that it outperformed other ML
algorithms for attack classification. The response plot value
in Fig. 6 is the prediction observation plot illustrating the
features of the True response (with higher observation) against
the predicted response.

Fig. 5. Performance of Proposed RQGPR showing the highest accuracy in
comparison to some ML algorithms.

Fig. 6. Predictions vs True response of the Proposed Rational Quadratic GPR
(RQGPR)

D. Proposed Model Result Validation using the CIRA-CIC-
DoHBrw-2020 Datasets

Consistent with the result, Table III validates the proposed
kernel as it had the least MAE. Following the investigation,
the result shows that RQGPR decreases MAE by 67.61% and
surpasses other kernels like MGPR (51.56%), EGPR (63.10%),
and SEGPR (0.00%) the baseline. This result is in Fig. 7.

V. CONCLUSION

This study proposed RQGPR for SCADA network com-
munication attack detection using cyber-security datasets. The
findings reveal that the proposed RQGPR outperformed other
cutting-edge kernels for prediction efficiency and reduction in
false alarm rates, as seen by the 71.73% reduction in MAE.
SCADA network communication traffic is generated regularly
due to the polling method used for data collection. As a result,
traffic patterns are not as dependent on human activity as in
traditional IoT networks. To validate the proposed model’s
applicability in a scenario other than the SCADA network,
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Fig. 7. When compared to other kernels, the proposed RQGPR performance
shows that it has the best MAE and R-Squared results. It is worth noting that
it has the lowest error rate.

the proposed model evaluated the CIRA-CIC-DoHBrw-2020
dataset. The choice of this dataset is a result of being a
network traffic cyber-security dataset with present-day attacks
from DNS tunneling. The experimental results demonstrate the
efficiency of the proposed model with an MAE reduction of
67.61%, with a superior detection accuracy in a comparative
analysis with other-state-of-art models. In the future, it will
be interesting to broaden the comparison by examining more
current cyber-security datasets with additional attributes to
reveal the flexibility and tenacity of the kernels.
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