

Improvement of Bandwidth Fairness between TCP
BBRv2 and CUBIC

Hyo-Seop Cho
School of Electronic and Electrical

Engineering
Kyungpook National University

Daegu, Korea
yg011175@knu.ac.kr

Geon-Hwan Kim
School of Electronic and Electrical

Engineering
Kyungpook National University

Daegu, Korea
kgh76@ee.knu.ac.kr

You-Ze Cho*
School of Electronic and Electrical

Engineering
Kyungpook National University

Daegu, Korea
yzcho@ee.knu.ac.kr

Abstract— Google proposed Bottleneck Bandwidth Round-trip
propagation time version2 (BBRv2) congestion control algorithm
to solve the bandwidth fairness problem of the BBRv1. The
bandwidth fairness of BBRv2 depends on the Bandwidth Delay
Product (BDP). When the bottleneck buffer is less than 2BDP,
BBRv2 improves bandwidth unfairness in bandwidth sharing with
loss-based congestion control algorithm such as CUBIC over
BBRv1. However, when the bottleneck buffer exceeds 2BDP,
BBRv2 has bandwidth fairness issues. In this paper, we proposed
F-BBRv2 to solve the bandwidth fairness problem of BBRv2 by
using the min_RTT value and adaptive pacing_gain method.

Keywords— TCP congestion control algorithm, BBRv2, CUBIC,
Bandwidth Fairness.

I. INTRODUCTION

In 2016, Google proposed a new concept for congestion
control algorithms called Bottleneck Bandwidth Round-trip
propagation time (BBRv1) [1]. The BBRv1 congestion control
algorithm measures maximum bottleneck bandwidth and
minimum delay. BBRv1 aims at maximum transmission speed
and low queue delay through the measured value. When BBRv1
and loss-based congestion control algorithm share the same
bottleneck link, the two algorithms do not share the bottleneck
bandwidth fairly. To address the problem of BBRv1, Google
proposed BBRv2 with packet loss and Explicit Congestion
Notification (ECN) rate applied in 2019.

BBRv2 determines the transmission amount by measuring
the bottleneck link bandwidth and the minimum Round-Trip
Time (min_RTT) in the same way as BBRv1. Additionally,
BBRv2 considers packet loss and ECN rate to share bandwidth
fairly with other congestion control algorithms. If the packet loss
is more than 2% or the ECN is more than 50%, BBRv2 does not
increase the transmission rate anymore. Due to algorithm
improvement, BBRv2 uses the bottleneck link bandwidth more
fairly than BBRv1.

BBRv2 bandwidth fairness depends on the size of the
bottleneck buffer Bandwidth Delay Product (BDP). In a
bottleneck buffer environment of 2BDP or less, BBRv2 flow
and loss-based congestion control e.g., CUBIC [2] flow use the
bottleneck link bandwidth fairly. However, when the bottleneck
buffer is more than 2BDP, BBRv2 flow and CUBIC flow
unfairly use the bottleneck bandwidth. In this paper, we propose
F-BBRv2 to address the unfairness of BBRv2 bandwidth.

II. ADAPTIVE PACING GAIN METHOD

When the BBRv2 and CUBIC flow share the same
bottleneck bandwidth and the bottleneck buffer is 2BDP or more,
the bottleneck bandwidth fairness problem occurs due to the
algorithm`s different operating characteristics. BBRv2 fills the
bottleneck buffer up to 2BDP in an environment where packet
loss is absent. However, CUBIC fills the bottleneck buffer until
a loss occurs. These different operating characteristics cause the
CUBIC flow to more aggressively occupy bottleneck bandwidth
than BBRv2 flow.

Additionally, if only the BBRv2 flow uses bottleneck
bandwidth, the min_RTT estimated value in BBRv2 will not
exceed 2*link delay, because it will only fill the bottleneck
buffer up to 2BDP. However, when the bottleneck bandwidth is
shared with the CUBIC flow and the bottleneck buffer size is
2BDP or more, long queue delay is created in the bottleneck
buffer by CUBIC flow. The long queue delay accumulated in
the bottleneck buffer causes the min_RTT of BBRv2 to be
measured high.

In this paper, we propose Fair-BBRv2 (F-BBRv2) to address
the issue that the bottleneck bandwidth of BBRv2 flow and
CUBIC flow cannot be used fairly.

F-BBRv2 adds two steps to the existing BBRv2 to improve
bandwidth fairness. First, F-BBRv2 detects that it shares a
bottleneck bandwidth with the CUBIC flow when min_RTT
exceeds 2*link delay. The existing BBRv2 left 15% headroom
to increase fairness with other flows [3]. However, headroom
reduces the transmission rate and exacerbates the problem of
fairness in the CUBIC flow. Second, F-BBRv2 improves
bandwidth unfairness with the CUBIC flow by increasing the
transmission rate of the probe bandwidth phase by 15%.

III. EXPERIMENT RESULTS

Fig. 1. Dumbbell topology

588978-1-6654-9927-9/22/$31.00 ©2022 IEEE APCC 2022

Figure 1 shows we used Network Simulator-3 (NS-3) to
construct a dumbbell topology where multiple flows share the
same bottleneck link. Access link bandwidth and bottleneck
bandwidth are 12 Mbps. Each link delay is 15 ms and queue
management used tail-drop. The experiment time is 100 s.

(a) buffer size < 2BDP

(b) buffer size > 2BDP

Fig. 2. Throughput of BBRv2 flow and CUBIC flow according to the
bottleneck buffer size.

Figure 2 shows the throughput over time according to the
bottleneck buffer size of BBRv2 flow and CUBIC flow. In
Figure 2(a), the average throughput of the BBRv2 flow is 5.4
Mbps and the average throughput of the CUBIC flow is 6.1
Mbps. As a result, when the bottleneck buffer is less than 2BDP,
the two flows share the bottleneck bandwidth fairly. However,
the average throughput of the two flows is different in
environments where the bottleneck buffer is 2BDP or more.
Figure 2(b) indicates that the CUBIC flow has 3 Mbps higher
average throughput than the BBRv2 flow.

(a) buffer size < 2BDP

(b) buffer size > 2BDP

Fig.3. Throughput of F-BBRv2 flow and CUBIC flow according to
the bottleneck buffer size.

(a) (b)

Fig. 4. Throughput ratio

Figure 3 shows the change in throughput for F-BBRv2 and
CUBIC flows over time. The F-BBRv2 flow and the CUBIC
flow share the bottleneck bandwidth fairly in Figure 3(a).
Additionally, Figure 2(b) and 3(b) show that the F-BBRv2 flow
share the bottleneck bandwidth more fairly than the BBRv2
flow.

Figure 4 indicates that throughput ratio of each flows. The
throughput ratio is calculated as follows. Throughput ratio =
each flow throughput / (bottleneck link bandwidth / number of
flows). As the box chart approaches 1.0, it can be seen that the
bottleneck bandwidth is being used fairly.

The two box charts in Figure 4(a) are located far from 1.0.
In other words, the two flows do not share bottleneck bandwidth
fairly. However, Figure 4(b) shows that the two box charts are
close to 1.0 and the two flows use bandwidth fairly. Therefore,
the F-BBRv2 improved and outperformed the bottleneck
bandwidth fairness issue more than the BBRv2.

IV. CONCLUSION

There is a bandwidth fairness problem when BBRv2 flow
shares bandwidth with CUBIC flow and the bottleneck buffer
size is 2BDP or larger. In this paper, we propose F-BBRv2 as a
solution to the bandwidth fairness problem of BBRv2. F-BBRv2
is 5.8 Mbps for both flows, regardless of the bottleneck buffer
size. Therefore, F-BBRv2 has improved bandwidth fairness than
BBRv2. In the future, we plan to experiment with various
congestion control algorithms.

ACKNOWLEDGMENT

This research was supported in part by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by Ministry of Education (No. NRF-
2018R1A6A1A03025109) and by National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MSIT) (No. NRF-2019R1A2C1006249).

REFERENCES

[1] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-based congestion control,” ACM Queue, vol. 14,
2016.

[2] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly High-Speed
TCP variant,” ACM SIGOPS Operating Systems Review, vol. 42, 2008.

[3] N. Cardwell, Y. Cheng, S. H. Yeganeh, I. Swett, V. Vasiliev, P. Jha, Y.
Seung, M. Mathis, and V. Jacobson, “BBRv2: A Model-based Congestion
Control,” in Proc. IETF 104 meeting, 2019.

589

