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Abstract—This paper proposes a low complexity receiver that
outperforms the MLD in overloaded MIMO-OFDM systems. The
proposed receiver applies iterative noise cancellation to improve
the transmission performance. A low complexity LLR calculation
technique is introduced in the proposed receiver. The proposed
low complexity iterative non-linear receiver achieves better trans-
mission performance than the MLD with smaller calculational
complexity. The performance of the proposed techniques is verified
by computer simulation in a 6×3 overloaded MIMO channel.
When the reception process is only iterative 2times, the proposed
iterative non-linear receiver attains a gain of 0.8dB at the BER of
10−6. The computational complexity is evaluated in terms of the
number of additions. The proposed receiver achieves such superior
performance with the complexity which is about half as much as
conventional soft input decoding with the MLD.

I. INTRODUCTION

Communication speed has been increasing to a few Gbps
in wireless communication systems such as the fifth gener-
ation cellular systems and IEEE802.11 wireless local area
networks. The next generation cellular system will provide
users with faster communication links than the fifth generation
system. Lots of techniques have been utilized to implement
such high speed wireless communication systems, for example,
orthogonal frequency division multiplexing (OFDM), adaptive
modulation and coding (AMC), adaptive resource allocation,
and multiple input multiple output (MIMO) spatial multiplexing
[1]- [3]. Among them, MIMO spatial multiplexing is still
being considered to such high speed signal transmission in the
next generation cellular system, MIMO spatial multiplexing is
recognized to have the potential to increase the transmission
speed furthermore. In addition, another approach has been
considered to raise the transmission speed, e.g., non-orthogonal
multiple access (NOMA), faster than nyquist (FTN), and over-
loaded MIMO [4]- [9]. All of them load much more signals
in the system than usual to enhance the transmission speed.
NOMA has been identified as a technique in the fifth generation
cellular standard. The other two techniques are also regarded as
promising techniques. Overloaded MIMO spatial multiplexing
can increase the number of the spatially multiplexed signal
stream than conventional MIMO spatial multiplexing, which
implements a higher signal transmission. Because the number
of the spatially multiplexed signal streams exceeds the degree
of freedom of the receiver, non-linear receivers such as the

maximum likelihood detection (MLD) has been mainly applied
[10]- [13].

This paper proposes a low complexity receiver that outper-
forms the MLD in overloaded MIMO-OFDM systems. The
proposed receiver applies an iterative noise cancellation to
improve the transmission performance. A low complexity log-
likelihood ratio (LLR) calculation technique is introduced in the
proposed receiver. The proposed low complexity iterative non
-linear receiver achieves better from transmission performance
than the MLD with smaller calculational complexity.

This paper is organized as follows. The next section describes
a system model, and the proposed low complexity iterative non-
linear receiver is explained in the section 3. The performance
of the proposed receiver is confirmed in the section 4, and
conclusion is remarked in the final section.

II. SYSTEM MODEL

It is assumed that the transmitter is equipped with NT

antennas and the receiver with NR antennas. We are considering
an overloaded MIMO-OFDM system in which the number of
transmit antennas is larger than the number of receive antennas,
NT > NR. A convolutional coder is used. The encoder output
sequence is fed to a quaternary phase shift keying (QPSK)
modulater via an interleaver. The QPSK modulater output
signals are converted to the time domain with the inverse
discrete Fourier transform (IDFT). The signals in the time
domain are called as OFDM symbols. The OFDM symbols are
emitted to the air via the NT antennas without any precoding.
The transmitted signals are traveling in the multipath fading
channels, and received with the NR at the receiver. The receiver
signals are fed to the discrete Fourier transform (DFT) after
removing the cycle prefix. The signal received at the antenna
is fed to as dedicated DFT processor to perform the DFT
independently. Let Ym ∈ CNR denote a received signal vector
that contains the mth output signals from the DFTs, the received
signal vector Ym can be written as

Ym = HmXm +Nm (1)

Xm ∈ CNT , Nm ∈ CNR , and Hm ∈ CNR×NT denote the
modulation signal vector, an additive white Gaussian noise
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Fig. 1. System model

vector, and a channel matrix in the mth subcarrier, which is
defined as,

Hm =




Hm(1, 1) · · · Hm(1, NT)
...

. . .
...

Hm(NR, 1) · · · Hm(NR, NT)


 (2)

Hm(i, k) =

Lp−1∑
n=0

hm(i, k)e−j2π nm
Ns (3)

In the above equations, Hm(i, k) ∈ C, hm(i, k) ∈ C, and
Ns ∈ N represent a frequency response on the mth subcarrier
from the kth transmit antenna to the ith receive antenna, mth
path gain of the channel response between those antennas, and
the number of the DFT points. The received signal vector is
provided to the proposed non-linear iterative receiver, which is
explained in the next section.

III. ITERATIVE NON-LINEAR RECEIVER

A. Noise reduction by soft output signal

The proposed receiver applies a soft input decoding where
the LLR of the transmission bit is fed as a soft signal. The
channel matrix Xm is decomposed into a unitary matrix and
an upper triangular matrix for reducing the computational
complexity of the LLR calculation, which is explained in the
following section.

(
Hm
σ
σd

I

)
= Hm = QmRm (4)

In (4), Hm ∈ C(NR+NT)×NT , Qm ∈ C(NR+NT)×NT , Rm ∈
CNT×NT , INT

∈ RNT×NT , σ ∈ R and σd ∈ R denote an
extended channel matrix a unitary matrix, an upper triangular
matrix, the identity matrix, a standard deviation of the AWGN,
and an amplitude of the modulation signal [14]. The receiver
signal vector Ym is transformed with the unitary matrix Qm

before the LLR calculation. On the other hand, though the QR
decomposition defined in (4) is obtained from the viewpoint
of the minimum mean square error (MMSE) criterion, the QR
decomposition introduces additional noise into the transmission
system. The proposed receiver cancels the additional noise with
the decoder output signals for the performance improvement.

For further performance enhancement, the noise cancellation is
iterated in the proposed receiver.
Let Y(t)

m represent a received signal vector at the tth noise can-
cellation stage. The received signal vector at the tth cancellation
stage is defined as,

Y(t)
m =




(
Ym

0NT

)
(t = 0)

(
Ym

0NT

)
+

(
0NR

σ
σd

Ẋ
(t)

m

)
(t > 0)

(5)

In (5), Ẋ
(t)

m ∈ CNT and 0K ∈ RK a modulation signal vector
made by the decoder output signals and the K-dimensioned null
vector. Whenever the noise cancellation is iterated, the LLR is
recalculated with the vector Y(t)

m . As is described above Y(t)
m

is transformed with the unitary vector Qm. Let S(t)
m represents

a transformed received signal, i.e., S(t)
m = QmY(t)

m , the LLR
of the bit sent on the real part of the QPSK modulation signal
xm(k) ∈ is defined as

ζ(t)m (ℜ[xm(k)]) = − 1

2σ2
m

(
min

ℜ[xm(k)]=1

∣∣∣S(t)
m −RmXm

∣∣∣
2

− min
ℜ[xm(k)]=−1

∣∣∣S(t)
m −RmXm

∣∣∣
2
)

(6)

In (6), ℜ[ ] and ℑ[ ] denote the real and imaginary part of
the complex number in large bracket, respectively. xm(k) and
2σ2

m ∈ R denote the kth element of the modulation signal
vector variance of the noise, which is defined as follows.

2σ2
m = E



∣∣∣∣∣Q

H
m

(
Nm

σ
σd

(Ẋ
(t)

m −Xm)

)∣∣∣∣∣
2



= Tr
[
QmQH

mAm

]
(7)

, where Am ∈ R(NT+NR)+(NT+NR) denotes a diagonal matrix
defined in the following equation.

am(i, j) =





0 (i ̸= j)

2

(
σ

σd

)2

(i = j < NT)

2−ℜ[ẋ(t)
m (i)]2 −ℑ[ẋ(t)

m (i)]2 (i = j ≥ NT)
(8)

am(i, j), E[α] and Tr[β] represent an (i, j) element of the
matrix Am, the ensemble average of a variable α, and a trace
of a aquare matrix β.

The calculation of Ẋ
(t)

m is explained next. The LLR series
ζt
m obtained from equation (6) is integrated on all subcarriers,

deinterleaved to restore the original order, and input to the
Viterbi decoder. When iterative decoding is applied, the Viterbi
decoder outputs a soft output series u = [u(1), · · · , u(2N)]
from the following formula each time iterative decoding is
performed (N is the number of transmitted information bits).
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u(2i+ k) =
eρ(2i+k) − 1

eρ(2i+k) + 1
(i = 0, 1, · · · , N |k = 0, 1) (9)

ρ(2i+ k) = − min
c(2i+k)=1

(α(i) + β(i) + γ(i))

+ min
c(2i+k)=−1

(α(i) + β(i) + γ(i)) (10)

ρ(2i + k) in equation (10) is the LLR of the value taken by
the code c(2i+ k). The code c(2i+ k) is the output obtained
from a convolutional coder with a coding rate of 1/2. α, β
and γ in equation (10) represent the forward path metric,
branch metric, and backward path metric in Viterbi decoding,
respectively. The soft output sequence u obtained from the
decoder is interleaved and assigned to each subcarrier to form
the estimated signal vector Ẋ

(t)

1 , · · · , Ẋ
(t)

NS
∈ CNT . This , Ẋ

(t)

m

is added to the orthogonalized received signal vector as in
equation (5). The above results indicate that iterative decoding
can reduce the influence of noise components, and therefore,
better transmission characteristics can be obtained than with
the conventional soft-decision maximum-likelihood decoding
method.

B. Low complexity of soft decision signal

As described in (3), the LLR calculation needs two brute
force searches for only one bit. The calculation cost grows
exponentially as the number of the signal streams NT or
that of bits conveyed by a modulation signal increases. Let
K represent the number of bits, the LLR calculation is pro-
portioned to KNT2

KNT . The cost is about KNT times as
much as that of the MLD. This section introduces a low
complexity LLR calculation technique. Since the channel ma-
trix Hm is QR-decomposed as shown in (4), some signals
are only associated with limited number of bits less than
Kbits. When the number of bits decreases, in principle, the
computational cost of the brute force search is decreased. the
technique introduced in the section makes use of the fact to
reduce the computational cost of the LLR calculation. The
proposed technique defines a sub set of the reclined signal
vector. If the sub set is defined as

{
S
(t)
m,0, · · · ,S

(t)
m,NT−M

}

where S
(t)
m,i ∈ CM+i denotes a sub vector defined as Sm,i ={

s(t)(NT −M − i+ 1) · · · s(t)(NT)
}T

. The vector S
(t)
m,i can

be written as,

S
(t)
m,i = Rm,iXm,i +N

(t)
m,i (11)

In the above equation, Rm,i ∈ C(M+i)×(M+i), Xm,i ∈ CM+i,
and N

(t)
m,i ∈ CM+i represent sub vectors of the modulation

signal vector Xm,i and the AWGN vector N
(t)
m,i, which are

defined as Xm,i = (xm(NT −M − i+ 1) · · ·xm(NT))
T and

N
(t)
m,i =

(
n
(t)
m (NT −M − i+ 1) · · ·n(t)

m (NT)
)T

. xm(i) ∈ C

and n
(t)
m (i) ∈ C denote on ith entries of the modulation signal

vector Xm,i and the AWGN vector N
(t)
m,i, respectively. When

i is small enough, for example i = 2, the vector S
(t)
m,i is

associated with four bits. Therefore, if the LLR of some of
the 4bits is calculation based on (11), the LLR computation
cost can be reduced. Because the LLRs of those bits have been
calculated, even when i is incremented, the complexity of the
brute force search can be reduced. When a part of the LLR is
denoted as L

(t)
m (i) ∈ R, L(t)

m (i) can be defined as,

L(t)
m (i) =

∣∣∣S(t)
m,i −Rm,iXm,i

∣∣∣
2

=

M∑
l=i

∣∣∣∣∣ s
(t)
m (NT −M + l)

−
NT−i∑

k=NT−M+l

rm(NT −M + l, k)xm(k)

−
NT∑

k′=NT−i+1

rm(NT −M + l, k′)x(t)
m (k′)

∣∣∣∣∣
2

. (12)

If we introduce a log-likelihood ξ
(t)
m (ℜ[xm(k)] = l) that is the

smallest under constraint of ℜ[xm(k)] = l, the log-likelihood
ξ
(t)
m (ℜ[xm(k)] = l) can be defined as,

ξ(t)m (ℜ[xm(k)] = l) = min
x
(t)
m (k)=l

L(t)
m (i). (13)

With the log-likelihoods, the log-likelihood ratio
ζ
(t)
m (ℜ[xm(k)]) can be written as,

ζ(t)m (ℜ[xm(k)]) =
1

2σ2
m

(
ξ(t)m (ℜ[xm(k)] = 1)

−ξ(t)m (ℜ[xm(k)] = −1)
)
. (14)

In (12)∼(14), ẋm(k′) ∈ C represents the estimated signals
made of the bits estimated in the previous LLR calculations.
When M is set to T, the above LLR calculation gets identical
to the original LLR. As M is decreased, the computational
complexity of the LLR calculation is reduced, which could
cause to degrade the decoding performance. As is described, the
receiving process including the decoding is iterated for the noise
cancellation in the proposed receiver. As the receiving process
is iterated, the computational complexity increases linearly.
To mitigate the increase in the computational complexity, we
propose a per iteration stage M -value setting, where a different
M value is used at each iteration stage. The M values at
the nth iteration stage is defined as Mn. When the receiving
process is iterated ttimes, the set of M -values is described
as (M0,M1, · · · ,Mt) in this paper. Fig. 2 shows the state
transitions of Xm,i, with the value of i in the horizontal line
and the states of Xm,i in the vertical line. For convenience,
BPSK is applied to this figure instead of QPSK. The state is
determined by the value of xm(NT−M−i+1) ∼ xm(NT−i),
and the total number of states is 4M when QPSK is applied.
In Fig. 2, the solid lines represent branches that survived the
selection operation in each state, and the dashed lines represent
branches that were truncated. The selection operation is based
on the size of L

(t)
m (i), and this operation results in 4M types
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of Xm,i for each i used in the LLR calculation.

Fig. 2. State transition

IV. SIMULATION

The performance of the proposed techniques is evaluated
by computer simulation in an overloaded a 6×3 MIMO chan-
nel, i.e., (NT, NR)=(6,3). Because the number of the transmit
antennas is equal to that of the spatially multiplexed signal
streams, the overloading ratio is 2. Multi-path fading is applied
as a channel model, and the channel matrix is assumed to
be estimated perfectly. The rate half convolutional code with
constraint length of 3 is applied. The simulation parameters are
listed in TABLE I.

TABLE I
PARAMETERS IN COMPUTER SIMULATION

Channel model 4-path fading
Number of subcarriers 64

Modulation QPSK
Code rate 1/2

Constraint length 3
Interleaver Block interleaver

NT 6
NR 3

A. BER

Fig. 3 and Fig. 4 show the BER performance of the proposed
receiver. In Fig. 3 and Fig. 4, the number of iterations is 0
and 2, respectively. The” (M0,M1,M2) = (4, 4, 6)” in the
figure represents the BER performance of the proposed receiver
when M = 4 for the first decoding, M = 5 for the first
iteration, and M = 6 for the second iteration. In the figures, the
soft decoding without any iteration and complexity reduction
technique is added as one of conventional techniques. The
application of the low complexity decoding with M = 4 and
5 degrades the transmission performance by about 0.5dB and
0.3dB of the BER of 10−6, respectively. If the decoding is not
iterated, with M of 6 is reduced to the conventional receiver.
The BER performance with M = 6 is exactly the same to the
conventional receiver in Fig.3. When the decoding is iterated,
the performance of the proposed receiver is getting better than
that of the conventional receiver as shown in Fig.4. However,
the performance gain depends on the complexity reduced
decoding. While the proposed receiver with (M0,M1,M2) =
(4, 4, 6) in the low complexity decoding attains just a gain
of 0.4dB of the BER of 10−6, (M0,M1,M2) = (4, 4, 5)

Fig. 3. BER of the proposed method in 6×3 MIMO(0 iteration)

Fig. 4. BER of the proposed method in 6×3 MIMO(2 iteration)

and (M0,M1,M2) = (4, 4, 6) enable the proposed receiver
to achieve gains of 0.6dB and 0.8dB at the same BER. The
proposed receiver with (M0,M1,M2) = (4, 4, 6) is only 0.1dB
inferior to that with (M0,M1,M2) = (6, 6, 6), i.e, that without
complexity reduction in the decoding.

Fig. 5 shows the gain obtained using the proposed method
over the conventional method at BER of 10−6 with respect
to the receiver antennas NR. The number of the transmit
antennas is set to 6, and the decoding is iterated twice in
the figure. The performance gain of the proposed receiver
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Fig. 5. Gains obtained by the proposed method

with (M0,M1,M2) = (4, 4, 6) is drown in the figure, where
that without any low complexity decoding, (M0,M1,M2) =
(6, 6, 6) is added. As is shown, higher performance gain can
be achieved as the number of the receive antennas is decreased
in spite of the decoding schemes. In other words, the proposed
receiver attains higher gain as the over loading ratio is raised.
When the overloading ratio is 1, i.e., NR = 6, the proposed
iterative receiver attains a gain of only less than 0.2dB. On the
other hand, if the number of the received antennas is reduced to
2, the gain is increased to 1.4dB at most. Even if the proposed
low complexity decoding is applied to the proposed receiver, a
gain of 1.4dB is attained.

B. Computational complexity

The computational complexity of the proposed iterative re-
ceiver with the low complexity decoding is evaluated in terms
of the number of additions. Though the number of multiplies
is usually used as a metric of the complexity, the number of
multiplies is not appropriate for evaluating the complexity of
the proposed receiver, because the number of the complexity
is independent of the iteration. Fig. 6 shows the computational
complexity with respect to the parameter of the low complexity
decoding Mn, where the decoding is iterated twice. In the
figure, the vertical axis and the horizontal axis are the number
of additions per packet and M2-value. The complexity with
(M0,M1) = (4, 4) is compared with that with (M0,M1) =
(6, 6). When (M0,M1) = (4, 4) is used, the computational
complexity with (M0,M1) = (4, 4) is about one-seventh as
much as the other in spite of the M2 values. Even when M0

is equal to 6, the performance gap is kept approximately. If
we see the transmission performance shown in Fig. 4 where
the transmission performance with (M0,M1,M2) = (4, 4, 6)
is about the same to that with (M0,M1,M2) = (6, 6, 6), we
can conclude that the proposed low complexity decoding can
successfully reduce the computational complexity without any

Fig. 6. Number of additions

transmission performance degradation, if the parameters are
carefully selected.

V. CONCLUSION

This paper proposes a low complexity iterative non-linear
receiver for overloaded MIMO-OFDM systems. The proposed
receiver applies iterative noise cancellation to improve the
transmission performance. A low complexity LLR calculation
technique is introduced in the proposed receiver. The proposed
low complexity iterative non-linear receiver achieves better
transmission performance than the MLD with smaller calcula-
tional complexity. The performance of the proposed techniques
is verified by computer simulation in a 6×3 overloaded MIMO
channel. When iterative decoding is applied, the proposed
techniques attain a gain about 0.8 dB with low complexity
(M0,M1,M2) = (4, 6, 6) and a gain about 0.9 dB without low
complexity decoding at BER of 10−6. Additionally, the larger
the overload factor, the greater the gain obtained from iterative
decoding. Even when M0 is equal to 6, the performance gap
is kept approximately. If we see the transmission performance
shown in Fig. 4 where the transmission performance with
(M0,M1,M2) = (4, 4, 6) is about the same to that with
(M0,M1,M2) = (6, 6, 6), we can conclude that the proposed
low complexity decoding can successfully reduce the com-
putational complexity without any transmission performance
degradation, if the parameters are carefully selected.
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