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Abstract—This paper extends the idea of availability 

importance from the first-order partial derivative of the 
system availability to the second-order partial derivative for 
Markov models. This measure expresses the strength of 
correlation between two transition rates. We found that a 
special matrix can be efficiently combined with the procedure 
of analysis for a continuous-time Markov chain. Numerical 
experiments demonstrate the effectiveness of our proposal. 
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I. INTRODUCTION 
How to design a highly reliable system is today’s 

significant issue in the QoS research field. While many 
topics exist in this field, reliability is significant  because 
research for QoS is to find how to realize high satisfaction 
for users and reliable service is a key to provide such high 
satisfaction. Therefore, this paper focuses on reliability 
issue. Especially, we focus on the topic of reliability 
importance. This is very useful to find which component 
should be improved with high priority, under the budget 
constraint.  

The Birnbaum importance [1] was the first measure to 
be used in reliability importance analysis. It is defined as the 
partial derivative of the system reliability with respect to the 
component reliability for a non-repairable system. 
Birnbaum pointed out that this measure for component i 
increases as the effect of the reliability of component i on 
the system reliability grows larger effect to system 
reliability. By using the Birnbaum importance, designers 
can easily determine the priority with which components 
should be improved from the reliability point of view when 
they face budget limitations. 

Availability importance is an extension of the idea from 
a non-repairable system to a repairable one. It is defined as 
the partial derivative of the system availability with respect 
to the component failure rate, component repair rate, or 
other parameter affecting the system availability. Ref. [2] 
defined it for combinatorial models, whereas Refs. [3][4] 
defined it for Markov models. Ref. [5] gave an application.  

Here, one question arises. Why do we not have an 
importance measure based on the second-order partial 
derivative for a repairable system, even though we do have 
one based on the second-order partial derivative for a non-
repairable system [6][[7]? 

Now, we propose an extension of the availability 
importance from first- to the second-order partial derivative 
of system availability. We call our measure ‘joint 
availability importance’. We also propose an efficient 
method to evaluate it for Markov models. Numerical 
experimental results on computer certify its effectiveness. 

II. PREPARATION 
We assume that the system consists of n components. 

The natural number i is the identifier of each component. If 
we do not need to distinguish between the system and its 
components, then the word ‘item’ is used. An item has two 
states: ‘success’ and ‘failure’. 

For a non-repairable system, the reliability of an item is 
defined as the probability of it being in the success state. If 
the item is a system, we call it the system reliability, whereas 
if the item is a component, we call it the component 
reliability. R denotes the system reliability and Ri denotes 
the component reliability of component i.  

For example, consider the system structure expressed by 
the reliability block diagram illustrated in Fig. 1. Its system 
reliability is determined below, where i = 1, 2, 3 as in Fig. 1. 
(We sometimes omit ‘×’ from equations for simplicity.) 

R = R1 + R2R3−R1R2R3.                                 (1) 

 
Fig. 1. Reliability block diagram. 

 
The mean time between failures (MTBF), mean time to 

repair (MTTR), failure rate, repair rate, and availability (A) 
for a repairable system are defined below. 

 
MTBF: Average time from repair to the next failure of an 

item 
MTTR: Average time from occurrence of a failure to repair 

of an item 

Fig. 2. Success and failure of an item. 

Failure rate: 1
MTBF              Repair rate: 1

MTTR   

Availability: MTBF
MTBF+MTTR 

    
We assume that the system satisfies the conditions of a 

continuous-time Markov chain (CTMC) [2][3][9] for a 
repairable system, where the behavior of the system is 
expressed in terms of a transition diagram. Fig. 3 is an 
example of a transition diagram. 
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As mentioned above, states are categorized as success 
states and failure states. Success states indicate the success 
of the system, and failure states indicate the failure of the 
system. 

 

Fig. 3. Example of transition diagram. 
 

In the figures of this paper, a success state is illustrated 
by an    , and a failure state is illustrated by an ⊗⊗.  Each state 
has its own number (state number) from 1, 2, … , m. These 
numbers are written in italics in the figures. wi, j denotes the 
transition rate from state i to state j. In Fig. 3,  w1, 2 = 2,    
w1, 3 = 0, w2, 1 = 0, w2, 3 = , w3,1 =  w3, 2 = 0. 

Suppose that HQ (Q = 1, 2, .. ) is a two-by-two matrix 
written as  

HQ = [ℎ1,1(𝑄𝑄) ℎ1,2(𝑄𝑄)
ℎ2,1(𝑄𝑄) ℎ2,2(𝑄𝑄)]. 

 

We will denote the matrix 

[
 
 
 ℎ1,1(1) ℎ1,2(1)
ℎ2,1(1) ℎ2,2(1)
ℎ1,1(2) ℎ1,2(2)
ℎ2,1(2) ℎ2,2(2)]

 
 
 
 by [𝐻𝐻1

𝐻𝐻2
] and 

the matrix 
 

[
 
 
 ℎ1,1(1) ℎ1,2(1)
ℎ2,1(1) ℎ2,2(1) 
ℎ1,1(3) ℎ1,2(3)
ℎ2,1(3) ℎ2,2(3)

   ℎ1,1(2) ℎ1,2(2)
   ℎ2,1(2) ℎ2,2(2)
   ℎ1,1(4) ℎ1,2(4)
   ℎ2,1(4) ℎ2,2(4)]

 
 
 
 

 
by [𝐻𝐻1 

𝐻𝐻3 
𝐻𝐻2
𝐻𝐻4

] . Similar expressions will be used for other 
matrices. We sometimes use ‘/’ to denote the division 
operation.  

III. ANALYSIS OF CTMC  
 Here, we review the basic techniques of analysis of 

CTMC that will help the reader to understand our proposal. 
An infinitesimal generator matrix G is used to evaluate 

the system availability A for CTMC [9]. G is an m × m 
matrix with the following properties, where m is the number 
of states and u and v are natural numbers. 

Property 1. The (u, v)-th element of G is wu, v if u ≠ v. 
Property 2. The (u, v)-th element is the negative of the sum 

of the other elements in row u 
 

 Property 2 implies that the row sum of G is zero. 

The following procedure is used to evaluate the system 
availability with G. 

 
Step 1. Let  = (P1, P2, … , Pm) and 0 be a row vector 

consisting of m zeros. The following matrix 
equation is true. 

                                         G = 0 
Step 2. G = 0 implies that we have m linear equations. We  

replace one of them with the following equation. 
P1 + P2 + … + Pm = 1 

            We can determine  from these equations because 
the problem is one of solving m linear equations with 
m unknown variables Pk. 

Step 3. We obtain the system availability A by summing Pk 
over all success states.  

 
An example solution for the model in Fig. 3 is 

demonstrated below. 
 

Step 1. G = [
−2𝜆𝜆 2𝜆𝜆  0
0 −𝜆𝜆  𝜆𝜆
𝜇𝜇 0 −𝜇𝜇

]. From this and G = 0, we get 

 

  [P1, P2, P3] [
−2𝜆𝜆 2𝜆𝜆  0
0 −𝜆𝜆  𝜆𝜆
𝜇𝜇 0 −𝜇𝜇

] = [0 0 0]. 

 
Step 2. Accordingly, we obtain the following equations. 
 

P1 ×(−2)              +   P3    =   0 
                        P1 × 2    −   P2                  =   0 

P2   −   P3    =   0 
 

After replacing the last equation with P1 + P2 + P3 = 1, 
the above can be expressed in terms of a matrix equation:  

 

[
−2𝜆𝜆 0  𝜇𝜇
2𝜆𝜆 −𝜆𝜆  0
1 1  1

] [
𝑃𝑃1
𝑃𝑃2
𝑃𝑃3

] = [
0
0
1
]. 

 
Thus, P1, P2 and P3 can be computed from  
 

[
𝑃𝑃1
𝑃𝑃2
𝑃𝑃3

] = [
−2𝜆𝜆 0 𝜇𝜇
2𝜆𝜆 −𝜆𝜆 0
1 1 1

]
−1

[
0
0
1
] 

 

= 1
2𝜆𝜆2 + 3𝜆𝜆𝜆𝜆 [

−𝜆𝜆 𝜇𝜇 𝜆𝜆𝜆𝜆
−2𝜆𝜆 −2𝜆𝜆 − 𝜇𝜇 2𝜆𝜆𝜆𝜆
3𝜆𝜆 2𝜆𝜆 2𝜆𝜆2

] [
0
0
1
] 

We obtain  
 

P1 = 𝜆𝜆𝜆𝜆
2𝜆𝜆2+3𝜆𝜆𝜆𝜆 = 𝜇𝜇

2𝜆𝜆+3𝜇𝜇, P2 = 2𝜆𝜆𝜆𝜆
2𝜆𝜆2+3𝜆𝜆𝜆𝜆 = 2𝜇𝜇

2𝜆𝜆+3𝜇𝜇, 

P3 = 2𝜆𝜆2

2𝜆𝜆2+3𝜆𝜆𝜆𝜆 = 2𝜆𝜆
2𝜆𝜆+3𝜇𝜇. 

 
Step 3. Availability of the model in Fig. 3 is evaluated 

as  
 
                A = P1 + P2 = 𝜇𝜇

2𝜆𝜆+3𝜇𝜇 + 2𝜇𝜇
2𝜆𝜆+3𝜇𝜇 = 3𝜇𝜇

2𝜆𝜆+3𝜇𝜇.      (2) 
 
If  = 0.001 and m = 2.0, then A = 0.99967 for this 

example.    

IV. PREVIOUS RESEARCH 

A. Reliability Importance for Non-Repairable Systems  
As mentioned above, Ref. [1] proposed a measure for 

reliability importance analysis, called the Birnbaum 
importance, which we will denote by BIi. This measure is 

 

λ 

1  

3 

2λ 

2 

467



defined as the partial derivative of system reliability with 
respect to the component reliability, that is, BIi ≡ 𝜕𝜕𝜕𝜕

𝜕𝜕𝑅𝑅𝑖𝑖
. 

Ref. [1] emphasized that a component with a large 
Birnbaum importance should be given higher priority for 
improvement. 

For example, BI1, BI2 and BI3 for Fig. 1 are as follows. 

BI1 =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑅𝑅1
 = 𝜕𝜕(𝑅𝑅1+𝑅𝑅2𝑅𝑅3−𝑅𝑅1𝑅𝑅2𝑅𝑅3)

𝜕𝜕𝑅𝑅1
 =1 – R2R3 

BI2 =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑅𝑅1
 = 𝜕𝜕(𝑅𝑅1+𝑅𝑅2𝑅𝑅3−𝑅𝑅1𝑅𝑅2𝑅𝑅3)

𝜕𝜕𝑅𝑅2
 = R3  – R1R3 

BI3 =
𝜕𝜕𝜕𝜕

𝜕𝜕𝑅𝑅1
 = 𝜕𝜕(𝑅𝑅1+𝑅𝑅2𝑅𝑅3−𝑅𝑅1𝑅𝑅2𝑅𝑅3)

𝜕𝜕𝑅𝑅2
 = R2  – R1R2 

If R1 = R2 = R3 = 0.99, then BI1 = 0.0199, BI2 = BI3 = 
0.099 if R1 = R2 = R3 = 0.99. Therefore, improving 
component 1 should be given high priority.   

Ref. [6][7] extended the idea of Birnbaum to the second-
order partial derivative, calling the resulting measure the 
joint reliability importance. We denote it by JRI(u, v), where 
u and v are identifiers of components. That is, 

JRI(u, v) ≡ 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑅𝑅𝑢𝑢𝜕𝜕𝑅𝑅𝑣𝑣

. 

The following are interpretations of the joint reliability 
importance [6][7]. 
I1. JRI(u, v) > 0 indicates that one component becomes more 

important when the other is functioning (synergy); 
I2. JRI(u, v) < 0 indicates that one component becomes less 

important when the other is functioning (diminishing 
returns);  

I3. JRI(u, v) = 0 indicates that one component’s importance 
is unchanged by the function of the other. 

For example of Fig. 1,  

JRI(1, 2) = 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑅𝑅1𝜕𝜕𝑅𝑅2

 = 𝜕𝜕(𝑅𝑅1+𝑅𝑅2𝑅𝑅3−𝑅𝑅1𝑅𝑅2𝑅𝑅3)
𝜕𝜕𝑅𝑅1𝜕𝜕𝑅𝑅2

 = −R3 < 0. 

JRI(2, 3) = 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑅𝑅2𝜕𝜕𝑅𝑅3

 = 𝜕𝜕(𝑅𝑅1+𝑅𝑅2𝑅𝑅3−𝑅𝑅1𝑅𝑅2𝑅𝑅3)
𝜕𝜕𝑅𝑅2𝜕𝜕𝑅𝑅3

 = 1−R1  > 0 

JRI(3, 1) = 𝜕𝜕2𝑅𝑅
𝜕𝜕𝑅𝑅3𝜕𝜕𝑅𝑅1

 = 𝜕𝜕(𝑅𝑅1+𝑅𝑅2𝑅𝑅3−𝑅𝑅1𝑅𝑅2𝑅𝑅3)
𝜕𝜕𝑅𝑅3𝜕𝜕𝑅𝑅1

 = −R2  < 0 

These imply that components 1 and 2 and 3 and 1 show 
diminishing returns, while components 2 and 3 show 
synergy. 

Refs. [6][7] emphasized that such information is very 
important in reliability design and management of systems, 
including systems modeled as graphs, as is commonly done 
when designing communications networks. 

B. Reliability Importance for Repairable Systems 
Ref. [2] was the first to show an extension of the idea of 

Birnbaum to repairable systems. Refs. [3][4] devised an 
extension to Markov models. They defined availability 
importance as the partial derivative of the system 
availability A with respect to the transition rate (component 
failure rate, component repair rate, or other transition rate 
affecting the system availability) on the Markov model. 

For the case shown in Fig. 3, A is obtained from Eq. (2) 
in Section II. Here,  

 𝜕𝜕𝜕𝜕
 𝜕𝜕𝜕𝜕 =  −6𝜇𝜇

(2𝜆𝜆 + 3𝜇𝜇)2,      𝜕𝜕𝜕𝜕
 𝜕𝜕𝜕𝜕 = 6𝜆𝜆

(2𝜆𝜆 + 3𝜇𝜇)2. 

If  = 0.001 and  = 2.0, then  𝜕𝜕𝜕𝜕
 𝜕𝜕𝜕𝜕 = − 0.333 and  𝜕𝜕𝜕𝜕

 𝜕𝜕𝜕𝜕  = 
0.000167.  

These results imply that, for this example, an 
improvement to reduce the occurrences of failures (reducing 
) is more effective than an improvement to speed up repairs 
(increasing ). Refs. [6][7] emphasized that such 
information is very useful in the reliability design of systems. 

C. Problem of Previous Research 
While the joint reliability importance defined as the 

second-order partial derivative of system reliability is 
known to be useful for non-repairable systems, the utility of 
the second-order partial derivative of system availability for 
repairable systems has yet to be investigated. 

V. PROPOSAL 

A. Joint Availability Importance 
Here, we define a new measure, called the ‘joint 

availability importance’, as the second-order partial 
derivative of the system availability of a repairable system 
with respect to two transitions rates in its state transition 
diagram. That is, the joint availability importance JAI(, ) 
for transition rates  and  is  

JAI(, ) ≡ 𝜕𝜕2𝐴𝐴
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 

For the case shown in Fig. 3, A is obtained from Eq. (2) 
in Section II. Here,  

           JAI(, ) =  𝜕𝜕2𝐴𝐴
 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 =  −12𝜆𝜆+18𝜇𝜇

(2𝜆𝜆 + 3𝜇𝜇)3.  
 
If  = 0.0001 and  = 0.5, then JAI(, ) = 2.665. 

B. Interpretation of Joint Availability Importance 
The joint availability importance is more difficult to 

interpret than the joint reliability importance. We can 
explain this by using a simple case of a system consisting of 
a single component with its failure rate and repair rate 
denoted by  and , respectively. 

In this example, the system availability A is expressed as  

                                   A = 𝜇𝜇
𝜆𝜆+𝜇𝜇                                 (3) 

From the second partial derivatives, we obtain  

          𝜕𝜕
2𝐴𝐴

𝜕𝜕𝜕𝜕 = −𝜇𝜇
(𝜆𝜆 + 𝜇𝜇)2 < 0,     𝜕𝜕

2𝐴𝐴
𝜕𝜕𝜕𝜕 = 𝜆𝜆

(𝜆𝜆 + 𝜇𝜇)2 > 0. 

The former implies that A is a function of  showing a 
monotone decrease, while the latter implies that A is the 
function of  showing a monotone increase. 

If we assume  > , then  

JAI(, ) =   𝜕𝜕2𝐴𝐴
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 =  𝜇𝜇−𝜆𝜆

(𝜆𝜆+𝜇𝜇)3  > 0 

and the slope of A = 𝜇𝜇
𝜆𝜆+𝜇𝜇  plotted against  becomes 

shallower like in Fig. 4 when the repair rate changes from 
x to y and x < y. 
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Thus, in this case, JAI(, ) > 0 indicates that  becomes 
less important when  becomes large (diminishing returns). 

On the other hand, if we recognize  as the input variable, 
the slope of A against  becomes steeper like in Fig. 5 when 
the failure rate changes x to y and x < y under the same 
assumption of  > .  

 

 
 

 
Fig. 4. Plots of A = 𝜇𝜇

𝜆𝜆+𝜇𝜇 versus . 
 

 
 

Fig. 5. Plots of A = 𝜇𝜇
𝜆𝜆+𝜇𝜇 versus . 

 
Thus, in this case, JAI(, ) > 0 indicates that  becomes 

more important when  becomes large (synergy) . 

As shown above, JAI(, ) > 0 implies sometimes 
diminishing returns and sometimes synergy. This is quite 
different from the joint reliability importance explained in 
Subsection A of Section IV.  Therefore, we will limit the 
interpretation of the joint availability importance to a 
simpler one as described below, because the detailed 
interpretation of f the joint availability importance taking a 
positive or negative value seems to be difficult for Markov 
models at present. 

I1’. If JAI(, ) = 0, there is no correlation between  and . 
I2’. As |JAI(, )| becomes larger, the strength of the 

correlation between  and  becomes larger.   

C. Evaluation Method 
Readers might think that it is difficult to compute the 

partial derivative when the expression of the pre-derivative 
function is complicated, because of the following logic. 

 
1. If f = f1 × f2 then  𝜕𝜕𝜕𝜕

 𝜕𝜕𝜕𝜕 =  𝜕𝜕𝑓𝑓1
 𝜕𝜕𝜕𝜕 × 𝑓𝑓2 + 𝑓𝑓1 ×  𝜕𝜕𝑓𝑓2

 𝜕𝜕𝜕𝜕  
2. That is, if we have a single multiplication in the 

expression of f then the number of multiplications 
becomes two after executing partial derivative to f. 

3. Therefore, if we have m multiplications in the expression 
of f then the number of multiplications is estimated to 
be2m after taking the partial derivative. 

4. Accordingly, the computation time of the partial 
derivative of f increases exponentially relative to the 
number of multiplications in the expression of f.  

The above logic further suggests it would be even more 
difficult to compute the second-order partial derivative of a 
complicated function f. That’s why evaluating the joint 
availability importance has been thought to be prohibitively 
complicated when the number of states of the Markov 
model is large. 

However, recent information technologies have given us 
easy techniques with which to compute partial derivatives. 
The matrix approach is one of them [10][11]. 

Here, i we define matrix x(f) for f as  

 

x(f) ≡ [
𝑓𝑓 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥 𝑓𝑓],  

 

then the following equations are true for f1 and f2, where       
 x(f1) /x(f2) ≡ x(f1) × x(f2) –1. (x(f2) –1 is the matrix 
inverse of  x(f2).) 

 x(f1 + f2) =  x(f1) +  x(f2)                        (4) 
 x(f1 –  f2) =  x(f1) ―  x(f2)                      (5) 
 x(f1 × f2)  =  x(f1) ×  x(f2)                        (6) 
 x(f1 / f2)   =  x(f1) / x(f2)                           (7) 

 
For example, if f = 3𝜇𝜇

2𝜆𝜆+3𝜇𝜇 , by using Eqs. (4)-(7), we find 
that 

(f) = [
𝑓𝑓 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑓𝑓] = 3[𝜇𝜇 0

0 𝜇𝜇] (2 [𝜆𝜆 0
1 𝜆𝜆] + 3 [𝜇𝜇 0

0 𝜇𝜇])
−1

 

= [
3𝜇𝜇

2𝜆𝜆+3𝜇𝜇 0

 −6𝜇𝜇
(2𝜆𝜆 + 3𝜇𝜇)2

3𝜇𝜇
2𝜆𝜆+3𝜇𝜇

] 

 
and 
 

   𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = −6𝜇𝜇

(2𝜆𝜆 + 3𝜇𝜇)2. 
 
Ref. [10] showed that, when we use this matrix approach, 

the computational complexity of obtaining the partial 
derivative of f is proportional to that of obtaining the output 
of f.   

Ref. [11] extended it to the second-order partial 
derivative case. That is, if we define 

 

 x, y(f)  ≡

[
 
 
 
 
 

𝑓𝑓 0 0 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑓𝑓 0 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 0 𝑓𝑓 0
∂2𝑓𝑓
∂𝑥𝑥𝑥𝑥𝑥𝑥

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 𝑓𝑓]

 
 
 
 
 

, 

then the following equations are true for functions f1 and f2. 

 

 x, y(f1 + f2)  = x, y(f1) +  x, y(f2)                         
 x, y(f1 –  f2) =  x, y (f1) –   x, y(f2)                       
 x, y(f1 × f2)  =  x, y(f1) ×  x, y(f2)                      

 x 

 y  A 
 

 x 

 y  A 

  

  
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 x, y(f1 / f2)   =  x, y(f1) / x, y(f2)                            

 

Therefore, if f = 3𝜇𝜇
2𝜆𝜆+3𝜇𝜇, we obtain 

μ(f) = 

[
 
 
 
 
 𝑓𝑓 0 0 0

𝜕𝜕𝜕𝜕
𝜕𝜕𝜇𝜇 𝑓𝑓 0 0
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆 0 𝑓𝑓 0
∂2𝑓𝑓

∂𝜆𝜆𝜕𝜕𝜇𝜇
𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆

𝜕𝜕𝜕𝜕
𝜕𝜕𝜇𝜇 𝑓𝑓]

 
 
 
 
 

 

= 3[
𝜇𝜇 0
1 𝜇𝜇   0 0

0 0
0 0
0 0   𝜇𝜇 0

1 𝜇𝜇
] × (2 [

𝜆𝜆 0
0 𝜆𝜆   0 0

0 0
 1 0
 0 1   𝜆𝜆 0

 0 𝜆𝜆 
]+ 3 [

𝜇𝜇 0
1 𝜇𝜇   0 0

0 0
0 0
0 0   𝜇𝜇 0

1 𝜇𝜇
])

−1

 

       = 

[
 
 
 
 
 
 

3𝜇𝜇
2𝜆𝜆+3𝜇𝜇 0 0 0

6𝜆𝜆
(2𝜆𝜆 + 3𝜇𝜇)2

3𝜇𝜇
2𝜆𝜆+3𝜇𝜇 0 0

−6𝜇𝜇
(2𝜆𝜆 + 3𝜇𝜇)2 0 3𝜇𝜇

2𝜆𝜆+3𝜇𝜇 0
−12𝜆𝜆+18𝜇𝜇
(2𝜆𝜆 + 3𝜇𝜇)3

−6𝜇𝜇
(2𝜆𝜆 + 3𝜇𝜇)2

6𝜆𝜆
(2𝜆𝜆 + 3𝜇𝜇)2

3𝜇𝜇
2𝜆𝜆+3𝜇𝜇]

 
 
 
 
 
 

 

 
Thus,   𝜕𝜕2𝑓𝑓

 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 =  −12𝜆𝜆+18𝜇𝜇
2𝜆𝜆 + 3𝜇𝜇  

Ref. [11] showed that the complexity of computing the 
second partial derivative of f is proportional to the 
computational complexity of obtaining the output of f.  

Now we can apply the matrix approach of ref. [11] and 
obtain  JAI(, ). This entails executing Step 2 of Section 
III by replacing every element z of the matrix and vectors 
with , (z).  

The new steps can be easily executed on software 
specific to matrix computations, such as MATLAB. 

D. Motivational Example 
Let us demonstrate an example of applying the matrix 

approach of ref. [11] to the steps of Section III for the case 
of Fig. 3, where we define , (M) to be the matrix obtained 
by replacing any element of z of matrix M with , (z). 

Step 1. G = [
−2𝜆𝜆 2𝜆𝜆  0
0 −𝜆𝜆  𝜆𝜆
𝜇𝜇 0 −𝜇𝜇

]. From this and G = 0, we get 

 

  [P1, P2, P3] [
−2𝜆𝜆 2𝜆𝜆  0
0 −𝜆𝜆  𝜆𝜆
𝜇𝜇 0 −𝜇𝜇

] = [0 0 0] 

 
Step 2. From Step 1, we obtain the following equations. 

 
P1 ×(−2)              +   P3    =   0 

                        P1 × 2    −   P2                  =   0 
P2   −   P3    =   0 

The above can be expressed in terms of a matrix 
equation:  

[
−2𝜆𝜆 0  𝜇𝜇
2𝜆𝜆 −𝜆𝜆  0
1 1  1

] [
𝑃𝑃1
𝑃𝑃2
𝑃𝑃3

] = [
0
0
1
]. 

By applying , ( ) to every element of the matrix 
(vector is a kind of matrix) in this equation, we obtain 

[
 
 
 
 
 
 
 
 
 
 
 −2𝜆𝜆 0 0 0 0 0 0 0 𝜇𝜇 0 0 0

0 −2𝜆𝜆 0 0 0 0 0 0 1 𝜇𝜇 0 0
−2 0 −2𝜆𝜆 0 0 0 0 0 0 0 𝜇𝜇 0
0 −2 0 −2𝜆𝜆 0 0 0 0 0 0 1 𝜇𝜇
2𝜆𝜆 0 0 0 −𝜆𝜆 0 0 0 0 0 0 0
0 2𝜆𝜆 0 0 0 −𝜆𝜆 0 0 0 0 0 0
2 0 2𝜆𝜆 0 −1 0 −𝜆𝜆 0 0 0 0 0
0 2 0 2𝜆𝜆 0 −1 0 −𝜆𝜆 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1]

 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑃𝑃1 0 0 0

 𝜕𝜕𝑃𝑃1
 𝜕𝜕𝜕𝜕 𝑃𝑃1 0 0
 𝜕𝜕𝑃𝑃1
 𝜕𝜕𝜕𝜕 0 𝑃𝑃1 0

 𝜕𝜕2𝑃𝑃1
 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

 𝜕𝜕𝑃𝑃1
 𝜕𝜕𝜕𝜕

 𝜕𝜕𝑃𝑃1
 𝜕𝜕𝜕𝜕 𝑃𝑃1

𝑃𝑃2 0 0 0
 𝜕𝜕𝑃𝑃2
 𝜕𝜕𝜕𝜕 𝑃𝑃2 0 0
 𝜕𝜕𝑃𝑃2
 𝜕𝜕𝜕𝜕 0 𝑃𝑃2 0

 𝜕𝜕2𝑃𝑃2
 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

 𝜕𝜕𝑃𝑃2
 𝜕𝜕𝜕𝜕

 𝜕𝜕𝑃𝑃2
 𝜕𝜕𝜕𝜕 𝑃𝑃2

𝑃𝑃3 0 0 0
 𝜕𝜕𝑃𝑃3
 𝜕𝜕𝜕𝜕 𝑃𝑃3 0 0
 𝜕𝜕𝑃𝑃3
 𝜕𝜕𝜕𝜕 0 𝑃𝑃3 0

 𝜕𝜕2𝑃𝑃2
 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

 𝜕𝜕𝑃𝑃3
 𝜕𝜕𝜕𝜕

 𝜕𝜕𝑃𝑃3
 𝜕𝜕𝜕𝜕 𝑃𝑃3]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1]

 
 
 
 
 
 
 
 
 
 
 

. 

 

Accordingly,  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑃𝑃1 0 0 0

 𝜕𝜕𝑃𝑃1
 𝜕𝜕𝜕𝜕 𝑃𝑃1 0 0
 𝜕𝜕𝑃𝑃1
 𝜕𝜕𝜕𝜕 0 𝑃𝑃1 0

 𝜕𝜕2𝑃𝑃1
 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

 𝜕𝜕𝑃𝑃1
 𝜕𝜕𝜕𝜕

 𝜕𝜕𝑃𝑃1
 𝜕𝜕𝜕𝜕 𝑃𝑃1

𝑃𝑃2 0 0 0
 𝜕𝜕𝑃𝑃2
 𝜕𝜕𝜕𝜕 𝑃𝑃2 0 0
 𝜕𝜕𝑃𝑃2
 𝜕𝜕𝜕𝜕 0 𝑃𝑃2 0

 𝜕𝜕2𝑃𝑃2
 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

 𝜕𝜕𝑃𝑃2
 𝜕𝜕𝜕𝜕

 𝜕𝜕𝑃𝑃2
 𝜕𝜕𝜕𝜕 𝑃𝑃2

𝑃𝑃3 0 0 0
 𝜕𝜕𝑃𝑃3
 𝜕𝜕𝜕𝜕 𝑃𝑃3 0 0
 𝜕𝜕𝑃𝑃3
 𝜕𝜕𝜕𝜕 0 𝑃𝑃3 0

 𝜕𝜕2𝑃𝑃2
 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

 𝜕𝜕𝑃𝑃3
 𝜕𝜕𝜕𝜕

 𝜕𝜕𝑃𝑃3
 𝜕𝜕𝜕𝜕 𝑃𝑃3]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 −2𝜆𝜆 0 0 0 0 0 0 0 𝜇𝜇 0 0 0

0 −2𝜆𝜆 0 0 0 0 0 0 1 𝜇𝜇 0 0
−2 0 −2𝜆𝜆 0 0 0 0 0 0 0 𝜇𝜇 0
0 −2 0 −2𝜆𝜆 0 0 0 0 0 0 1 𝜇𝜇
2𝜆𝜆 0 0 0 −𝜆𝜆 0 0 0 0 0 0 0
0 2𝜆𝜆 0 0 0 −𝜆𝜆 0 0 0 0 0 0
2 0 2𝜆𝜆 0 −1 0 −𝜆𝜆 0 0 0 0 0
0 2 0 2𝜆𝜆 0 −1 0 −𝜆𝜆 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1]

 
 
 
 
 
 
 
 
 
 
 
−1

[
 
 
 
 
 
 
 
 
 
 
 0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1]

 
 
 
 
 
 
 
 
 
 
 

 

 

                 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜇𝜇
2𝜆𝜆+3𝜇𝜇 0 0 0

2𝜆𝜆
(2𝜆𝜆 + 3𝜇𝜇)2

𝜇𝜇
2𝜆𝜆+3𝜇𝜇 0 0

−2𝜇𝜇
(2𝜆𝜆 + 3𝜇𝜇)2 0 𝜇𝜇

2𝜆𝜆+3𝜇𝜇 0
−4𝜆𝜆+6𝜇𝜇

(2𝜆𝜆 + 3𝜇𝜇)3
−2𝜇𝜇

(2𝜆𝜆 + 3𝜇𝜇)2
2𝜆𝜆

(2𝜆𝜆 + 3𝜇𝜇)2
𝜇𝜇

2𝜆𝜆+3𝜇𝜇
2𝜇𝜇

2𝜆𝜆+3𝜇𝜇 0 0 0
4𝜆𝜆

(2𝜆𝜆 + 3𝜇𝜇)2
2𝜇𝜇

2𝜆𝜆+3𝜇𝜇 0 0
−4𝜇𝜇

(2𝜆𝜆 + 3𝜇𝜇)2 0 2𝜇𝜇
2𝜆𝜆+3𝜇𝜇 0

−8𝜆𝜆+12𝜇𝜇
(2𝜆𝜆 + 3𝜇𝜇)3

−4𝜇𝜇
(2𝜆𝜆 + 3𝜇𝜇)2

4𝜆𝜆
(2𝜆𝜆 + 3𝜇𝜇)2

2𝜇𝜇
2𝜆𝜆+3𝜇𝜇

2𝜆𝜆
2𝜆𝜆+3𝜇𝜇 0 0 0
−6𝜆𝜆

(2𝜆𝜆 + 3𝜇𝜇)2
2𝜆𝜆

2𝜆𝜆+3𝜇𝜇 0 0
6𝜇𝜇

(2𝜆𝜆 + 3𝜇𝜇)2 0 2𝜆𝜆
2𝜆𝜆+3𝜇𝜇 0

12𝜆𝜆−18𝜇𝜇
(2𝜆𝜆 + 3𝜇𝜇)3

6𝜇𝜇
(2𝜆𝜆 + 3𝜇𝜇)2

−6𝜆𝜆
(2𝜆𝜆 + 3𝜇𝜇)2

2𝜆𝜆
2𝜆𝜆+3𝜇𝜇]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 

 
Finally, we obtain 
 𝜕𝜕2𝑃𝑃1
 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 = −4𝜆𝜆+ 6𝜇𝜇

(2𝜆𝜆 +  3𝜇𝜇)3 ,  𝜕𝜕
2𝑃𝑃2

 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 = −8𝜆𝜆 + 12𝜇𝜇
(2𝜆𝜆 +  3𝜇𝜇)3 ,  𝜕𝜕

2𝑃𝑃2
 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 = 12𝜆𝜆 − 18𝜇𝜇

(2𝜆𝜆 +  3𝜇𝜇)3 

 
Step 3. JRI(, ) is evaluated as  
 

             JRI(, ) =  𝜕𝜕2𝐴𝐴
 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 =  𝜕𝜕

2𝑃𝑃1
 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 +  𝜕𝜕

2𝑃𝑃2
 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕  

 
= −4𝜆𝜆+6𝜇𝜇

(2𝜆𝜆 + 3𝜇𝜇)3 + −8𝜆𝜆+12𝜇𝜇
(2𝜆𝜆 + 3𝜇𝜇)3 = −12𝜆𝜆+18𝜇𝜇

(2𝜆𝜆 + 3𝜇𝜇)3 .  
 
If  = 0.001 and  = 2.0, then JRI(, )  = 0.16645 > 0 

for this example.    

VI. NUMERICAL EXPERIMENTS  
The experiment was executed in the following 

environment. 
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OS: Windows 10 home 
CPU: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz   

1.99 GHz 
RAM: 8.00GB, Language: MATLAB R2019b 
 
The target system is illustrated in Fig. 6. Ref. [3] 

evaluates the availability importance for this model.  
 

 
 
Fig. 6. Target model. 
 

The failure rate of component a is expressed as a and 
the repair rate is expressed as a for a = 1, 2, 3, and 4. 
Component 4 is a cold spare which not used unless 
component 3 fails. It is also assumed that the failure rate of 
component 1 increases from λ1 to λ1 when the load on 
component 1 increases due to the failure of any of the 
components 2, 3 and 4. The values of these parameters are 
given below. 

 
λ1 = 0.01, λ2 = 0.01, λ3 = 0.01, λ4 = 0.01, λ1 = 0.015, 
μ1 = 0.05, μ2 = 0.05, μ3 = 0.05, μ4 = 0.05 

 
The state transition diagram is illustrated in Fig. 7.  
 

 
Fig. 7. State transition diagram. 

 
For this model, we obtain JAI(1, 3) = −1.61 and 

JAI(1, 4) = −0.415. These imply that the strength of 
correlations of the component failure rate and repair rate 
between components 1and 3 and the component failure rate 
and repair rate between 1 and 4 are quite different, whose 
reason is the cold spare of component 4. It would be 
difficult to find such a difference without evaluating the 
joint availability importance. 

The computation time needed to evaluate both JAI(1, 
3) and JAI(1, 4) is less than 0.1 second on a computer. 

Ⅴ.  CONCLUSION 
We proposed to extend the idea of availability 

importance from the first-order partial derivative of the 
system availability to the second-order partial derivative 
for Markov models. This measure expresses the strength of 
correlation between two transition rates of a Markov model. 
We found that a special matrix can be efficiently combined 
with the procedure to execute an analysis of CTMC to 
obtain the joint availability importance. 

Numerical experimental results showed the 
effectiveness of our proposal. 

Future work will include: 

1.  a more detailed study of the interpretation of joint 
availability importance  

2. application of more practical models in order to derive 
useful findings in reliability design. 

3. development of importance measures based on much 
higher-order partial derivatives. 
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