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Abstract—Robust wireless communication between devices is
crucial to ensuring the reliability of IoT systems. However, it is
strictly relied on estimating the link quality of these devices, which
is usually interfered with by environmental factors. In such a sce-
nario, intelligent algorithms based on machine learning to select
resistant communication links are promising solutions, but they
demand sophisticated computation, limiting their deployment on
resource-constrained IoT devices. Therefore, this paper introduces
a lightweight link quality estimation algorithm, namely LLQE,
built from the gradient boosting decision tree. The superiority
of our proposal not only precisely assesses several levels of link
quality but also is lightweight enough for resource-constraint
devices. The evaluation results on publicly available datasets show
that LLQE accurately estimates various link quality indicators
with 97% accuracy.

Index Terms—Wireless link estimation, machine learning, In-
ternet of Things devices.

I. INTRODUCTION

We have been witnessing the transformation in several as-
pects of the industrial sector because of the rapid proliferation
of the Internet of Things, which significantly increases the
number of wireless devices deployed worldwide. Following
the report in [1], over 170 billion IoT devices are expected to
connect to the Internet by 2050. However, most IoT devices
are resource-constrained, with limited processing, memory,
and communication capabilities. In addition, these devices
are deployed in a wide area with many obstacles, restricting
radio signal propagation. Therefore, research on enhancing
connectivity in IoT devices recently gained much attention from
the research and industrial community [2].

Deploying IoT devices in a wide geographical area often
causes various communication issues because of considerable
fluctuation in the wireless signal generated by shadow fading,
attenuation, and noises from the weather [3]. This negatively
affects the reliability of communication links and may cause
errors in transmitted data or event packet loss, damaging the
fault-tolerance and dependability of the whole IoT system.
Thus, recognizing the quality of wireless links in advance is
crucial for IoT devices to select appropriate routing algorithms
or alternative links. It also lowers the energy consumption

to re-transmit network packets, extending the IoT device life
cycle [4].

Most existing link quality estimation methods based on
machine learning leverages classification models for modeling
physical and link-layer information collected by observing
network packets. For example, the authors in [5]–[7] indicate
the link quality by modeling the relationship between received
signal strength indicator (RSSI), signal-to-noise ratio (SNR),
and packet reception rate (PRR). The other works apply statisti-
cal data analysis methods to this information [8], [9]. However,
these works still own several limitations, including:

• Using the very limited level of quality information (only
“bad” and “good”). This significantly reduces the benefit
of indicating link quality.

• Using statistical information of network within a specific
time-window, leading a delay in estimating link quality.

• Using high computational models that are insufficient for
resource-constraint devices.

Motivated by these issues, in this paper, we first analyze
the wireless network metric (e.g., RSSI, SNR, PRR) and its
relationship with link quality indicators. Then, we introduce
a link quality estimation method based on a gradient boosting
decision tree that accurately estimates four levels of link quality
and is lightweight enough to deploy to IoT devices with
limited computation capability and being compatible with edge
frameworks [10], [11]. The main contributions of this paper are
summarized below:

• A method of data preprocessing is proposed during the
link quality estimation process to remove noise in sample
data and deal with an imbalanced sample of link quality.
This paper uses interpolation to replace noise in the
data sample. SMOTE is applied to deal with imbalanced
sample data so that each link quality level sample is
balanced.

• A generated synthetic feature is applied to affect model
accuracy. Polynomial regression generates synthetic fea-
tures by adding powers to the original features.

• A link quality estimation model for IoT devices based on
the Gradient Boosting decision tree is proposed, which
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classifies the link quality into four groups: good, immedi-
ate, bad, and very bad.

The rest of the paper is organized as follows. Related research is
presented in the section II. The proposed estimator is explained
in section III. The systems are evaluated under the section
IV. Finally, section V concludes and discusses future research
opportunities.

II. RELATED WORKS

Machine learning and deep learning algorithms are becoming
more popular and used in various fields. Many scientists have
implemented these methods to resolve the LQE problem, and
they have proven to be quite effective.

Wei Sun et al. [12] proposed a WNN-LQE system to
improve routers based on the SNR value. WNN-LQE can
also determine the trust interval of the PRR value and assess
whether the system meets the practical implementation criteria.
The Link Quality Indicator (LQI) value was examined by the
authors in [13] to enhance routers and create more efficient
connection selections. The algorithm divides a connection
into three levels based on LQI and other metrics, such as
RSSI: good, connectable, and bad. The approach combines
handling with fewer characteristics and classes, resulting in
faster and more accurate prediction results and a higher level
of trust. Miguel L. Bote-Lorenzo et al. [14] combine machine
learning techniques and online perception algorithms to create
a link quality estimation system that can be updated in real
time to match the adaptability of the connection. The system
may assess the quality of the linkages using this model by
integrating algorithms by anticipating a particular trust or value
matrix.

Jian Shu et al. [15] present an LQE model that classifies link
quality into five categories: very good, good, medium, bad, and
very bad, based on an SVM algorithm paired with a decision
tree method. The suggested approach delivers greater outcomes
and lower processing costs without reducing the accuracy of the
prediction findings by transforming them into a classification
issue rather than directly predicting the PRR value, as in prior
research. The authors in [16] offer a systematic quantification
of the impact of the design steps on the final performance
of a wireless link quality classifier. The proposed used a
decision tree to classify the link quality into three levels: good,
intermediate, and bad. In the preprocessing stage, the approach
analyzes the impact of re-sampling on wireless quality classi-
fication and evaluates an imbalanced dataset. The authors used
the Rutgers [17] dataset to evaluate the effectiveness of several
machine learning and deep learning models, including logistic
regression, SVM, decision tree, random forest, and multilayer
perception. The highest results have a 94 percent to 95 percent
accuracy rate. Data preparation strategies can address issues
such as noisy data and data imbalance.

The works in [18] proposed a lightweight, weighted Eu-
clidean distance-based multi-parameter fusion link quality es-
timator. The Fused parameter combines Signal-to-Noise Ratio

(SNR), Link Quality Indicator (LQI), and weighted Euclidean
distance. The link quality estimator is constructed by logistic
regression that estimates the mapping relation between the
fused parameter and packet reception ratio. The paper in [19]
proposes an effective link quality estimator method, namely
RNN-LQI, which adopts a Recurrent Neural Network (RNN)
to predict the Link Quality Indicator (LQI) series. RNN-LQI
estimates the link quality according to the fitting model of LQI
and PRR. The method is proper with low-power wireless links
with more fluctuations. IoT nodes are often deployed in harsh
environments and subjected to environmental noise during
communication, lowering network quality. A small proportion
of the imbalance is because of excellent and low connection
quality samples. As a result, the sample must be processed
before training. The preprocessing step in our suggested system
was employed to eliminate sample imbalance and noise. There-
fore, this paper proposed a link quality estimation model based
on the Gradient Boosting Decision Tree (GBDT) algorithm to
estimate the link quality.

III. LINK QUALITY ESTIMATION

A. Problem formation

Let {X ∈ RNxM , y ∈ RN} be the wireless link quality
data, where N and M denote the number of collected data and
physical layer parameters (e.g., RSSI, SNR, PRR), respectively.
The array xi = X[i, :] with i ∈ (1, n) represents a connection
stage at time i with the labeled link quality grade yn = y[n].
In this work, we use four grades to evaluate the link denoted
by values from one to four. Then, our goal is to build a link
quality estimation:

f(x) : RM → {1, 2, 3, 4} (1)

which is lightweight enough to deploy to IoT devices. The
overall link quality estimation is illustrated in Figure 1.

Fig. 1. System workflow

B. Link Quality Estimation Model

Our proposed approach is based on a Gradient Boosting
Decision Tree (GBDT), which receives RSSI and network fea-
tures as input parameters and output the quality of the wireless
link. The main idea to build an additive classification model
by successively fitting a weak classifier to current residuals. In
other words, the model is combined from all weak classifiers to
create an ensemble series classifier. As a result, freshly learned
weak classifiers could adaptively repair earlier weak classifiers’
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errors, significantly increasing prediction performance. We also
employs Gradient Boosting technique that uses decision trees
as weak classifiers and a loss function to discover residuals.
A decision tree, comprising a collection of nodes and edge
arrangements in a hierarchical structure, may break down
complicated issues into a more understandable hierarchy. In
detail, given the network information at time i denoted by xi,
the estimated link quality ŷi with N estimators is:

ŷi = E
N
(xi) =

N∑
n=1

fn(x1) (2)

where the EN and fn are the assembled and single decision
tree, respectively. In other words, the assemble EN is built up
from cumulative tree fn. Let denote En−1 is the previous stage
of En:

En(xi) = En−1(xi) + fn(xi) (3)

Where fn(xi) is the new tree added to reduce the loss
ln(yi, ŷi). Combining Eq. (10) and Eq. (3), fn(xi) could be
redefined as:

fn = argmin
f

n∑
i=1

l(yi, En−1(xi) + f(xi)) (4)

Applying the first-order Taylor approximation method to
approximately calculate the loss function l

l(yi, z) ≈ l(yi, a) + (z − a)
∂l(yi, a)

∂a
(5)

with z and an equal En−1(xi) + f(xi) and En−1(xi),
respectively. Note that ∂l(yi,a)

∂a is the derivative of the loss
function (negative gradient) denoted by di. The single decision
tree fn mentioned in Eq. (4) can be approximately defined as:

fn ≈ argmin
f

n∑
i=1

l(yi, En−1(xi)) + f(xi)di (6)

After removing constant equations, the short form of fn is:

fn ≈ argmin
f

n∑
i=1

f(xi)di (7)

For each iteration in the training phase, the network informa-
tion x is fitted to minimize value of fn by updating the negative
gradients di. The overall process is illustrated in Figure 2.

C. Selection link quality parameters

To accurately determine the quality of network links, we
have to analyze and understand the influence of observed
physical layer parameters on them. In fact, the physical layer
parameters (e.g., RSSI, LQI, and SNR) may quickly identify
connection changes, but they are significantly affected by
several environmental factors, such as attenuation, multipath
type of channel distortions, and background noise’s temporal.

In addition, public trace sets limit the valuable parameters for
LQE. For example, the Rutgers trace sets only publish raw
RSSI values and sequence numbers. Therefore, eliminating
redundant features and generating synthetic features are vital
to improving estimation quality.

Synthetic feature generation: To increase the number of
valuable features for model training, we analytically examine
the impact of the synthetic features generated from raw RSSI
values model performance. In detail, we create a feature matrix
consisting of degree-2 polynomial features generated from
raw RSSI values and their interaction, such as the average
(RSSI), standard deviation (σRSSI ), first order derivative of
RSSI (f ′(RSSI)) over k packets. The degree-2 polynomial
features (denoted by θRSSI ) of raw RSSI and its RSSI are
defined as

θRSSI = [1, RSSI,RSSI,RSSI
2
, RSSI ∗RSSI,RSSI2]

(8)
Oversampling minority class: Most public trace sets for

LQE are unbalanced and contains high-quality links, ranging
from 50% to 80% in total [20]. In such a scenario, the classi-
fication model may exhibit a specific deviation, increasing the
susceptibility to majority class samples and, consequently, low-
ering the model performance. To solve this issue, we employ
the synthetic minority oversampling technique (SMOTE) [21]
to create synthetic samples of minority classes instead of
duplication. Let xn denote a sample (feature vector) belonging
to a minority class and x′

n be its nearest neighbor; the synthetic
sample sn is calculated by:

sn = xn + rn ∗ (|xn − x′
n|) (9)

with rn is a random number between 0 and 1.

IV. EVALUATION RESULTS

In this section, we present the evaluation results of our
proposal in terms of its estimation performance. We first open
by describing the evaluated datasets, followed by the evaluation
metrics, and finally, presenting our results.

A. Evaluated Datasets

Evaluated dataset overview: The Rutger dataset contains
4,060 link traces extracted from 812 separate connections at
five different noise levels of 0, -5, -10, -15, and -20 dB.
It includes several attributes, such as raw RSSI, sequence
numbers, source node ID, destination node ID, and fake noise
levels. After deeply analyzing, we figure out that the valid value
of RSSI is from 0 to 127, so the RSSI values higher than 128
are removed.

Division of link quality grade: This proposal classifies links
into four categories based on their PRR values: good link,
intermediate link, bad link, and very bad link. We classify links
with PRR values between 90% and 100% as good links, values
between 50% and 90% as intermediate links, values between
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Fig. 2. Link quality estimation model based on gradient boosting decision tree

10% and 50% as bad links, and values between 0% and 10%
as very bad links. The PRR value clearly distinguishes the
relationship. The link quality grade as the link quality estimate
metric is defined in Table I.

TABLE I
DEFINITION OF LINK QUALITY GRADE

Link Quality Grade(LQG) Description The range of PRR
1 Good link 90%≤ PRR ≤ 100%
2 Intermediate link 50% <PRR <90%
3 Bad link 10% <PRR ≤ 50%
4 Very bad link 0% ≤ PRR ≤ 10%

B. Evaluation metrics

The accuracy metric is widely-used to evaluate the perfor-
mance of link quality estimators. However, it is insufficient for
analyzing unbalanced trace-sets, which are mostly constituted
of high-quality links. If the model correctly classifies all
samples as positive, the model’s accuracy is 90%, a high
performance, but this is inappropriate for negative samples.
Therefore, in our work, we employ several metrics, such as
the accuracy, precision, recall, F1-score, and confusion matrix.
The details of these metrics are summarized below: Let TP, FP,
TN, and FN denote true positive, false positive, true negative,
and false negative, respectively. The confusion matrix is used
to assess classifier precision and recall.

Precision =
TP

TP + FP

where TP is the number of true positives and FP the number
of false positives.

Recall =
TP

TP + FN

where TP is the number of true positives and FN the number
of false negatives.

F1 =
2 ∗ (precision ∗ recall)
precision+ recall

(10)

C. Results

Our proposal is implemented using Scikit-learn and Keras
with TensorFlow libraries and intensively evaluated on the
Rutger dataset to demonstrate its effectiveness.

Estimation quality: Figure 3 and 4 show the detailed esti-
mation performance and confusion matrix of our proposal on
the Rutger dataset, respectively. We note that the estimated
accuracy of high and low link qualities (good and very bad
labels) is reported about 99%, meaning that LLEQ accurately
selects effective network links and ignores low-quality ones.
With a deeper investigation of these results, the area under the
receiver operating characteristics (AUC-ROC curve) illustrated
in Figure 5 proves again the effectiveness of our proposal with
AUC values of all classes higher than 99%.

Resource consumption and baseline comparison: To demon-
strate the lightweight of our proposal, we monitor resource
consumption (memory and CPU footprints) when training and
running LLQE on a Raspberry Pi 4 Model B (Cortex-A72,
4GB Ram) for 8 minutes and report the results in Figure 6.
The training phase starts from the beginning to time index
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TABLE II
THE COMPARISION OF ML ALGORITHMS ON THE RUTGER DATASET.

Accuracy Levels of Quality
Decision Trees [16], 2020 95.2% 3
Random Forest [16], 2020 95.3 % 3

Multilayer perception [16], 2020 95.1 % 3
Logistic Regression [22], 2021 96.8 % 3

LLQE 97% 4

Fig. 3. The detailed link quality estimation results of our proposal.

Fig. 4. The confusion matrix of our proposal over the Rutger dataset.

number 23, and the running phase is the remaining time.
We can see from the results that LLQE only demands about
0.75 GB of memory for both training and running phases. Its
computational footprint is about 53% and 25% for training
and running phases, respectively. We compare LLQE with its
competitors and report the results in Table II. It is interesting
to see that LLQE not only estimates more level of quality than
its competitors but also achieves higher accuracy.

Fig. 5. The ROC-AUC curve of each link quality evaluated on the Rutger
dataset.

Fig. 6. The resource consumption of Raspberry Pi 4 when training and running
LLQE.

V. CONCLUSION

In this paper, we propose a link quality estimation method
named LLQE based on the gradient boosting decision tree
algorithm for IoT devices. We first analyze the wireless net-
work metric (e.g., RSSI, SNR, PRR) and its relationship with
link quality indicators. Then, we introduce a method of data
preprocessing during the link quality evaluation process. The
proposed approach uses decision trees as weak classifiers and
a loss function to discover residuals. We also employ the
synthetic minority oversampling technique to create synthetic
samples of the minority classes instead of duplication. Our
proposed approach is implemented using Scikit-learn and Keras
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with TensorFlow libraries and is intensively evaluated on the
Rutger dataset to demonstrate its effectiveness. The evaluation
result reveals that LLQE accurately estimates four levels of link
quality. In future work, we will focus on optimizing the energy
consumption of LLQE-enabled IoT devices.
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