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Abstract—One of the main challenges in all-optical packet
switching is to design optical buffers for packet conflict resolution.
In this paper, we consider a very general type of buffering
schemes, namely, optical N -to-K priority queues with time-
varying service capacity, where each packet is associated with
a unique priority upon its arrival, at time slot t at most c(t)
highest-priority packets are sent out from the queue if there are
packets in the queue and the service capacity c(t) (0 ≤ c(t) ≤ K)
of the queue is not zero, and up to N lowest-priority packets
are dumped from the queue if there is a buffer overflow. We
extend and generalize our previous constructions [8] of optical
priority queues under a priority-based routing policy from single
input/output to multiple inputs/outputs. The main contributions
of this paper are as follows: (i) The priority queues considered
in this paper subsume those considered in all previous works as
special cases. (ii) Our queueing model with time-varying service
capacity is not only more general but also more realistic than that
with fixed service capacity previously studied in the literature.
(iii) For the special case that N = K = 1, our constructions
in this paper subsume those in [8] as special cases. (iv) For the
special case that N = K, we show that an optical N -to-N priority
queue with buffer size 2O(

√
M/N) (exponential in

√
M/N ) can be

constructed by using an optical (M+2N)×(M+2N) (bufferless)
crossbar switch and M fiber delay lines, which substantially
improves the best result O(M3/N2) (polynomial in M/N ) in
the literature.

Index Terms—MIMO, optical buffers, optical queues, optical
switches, priority queues, time-varying service capacity.

I. INTRODUCTION

An important and challenging issue in all-optical packet
switching is the design of optical buffers for contention
resolution among packets competing for the same resources
so as to eliminate the notorious optical-electrical-optical (O-E-
O) problem and keep up with the ever-growing pace of optical
fiber link capacity. As optical random-access memory (RAM)
is not available yet, one of the approaches currently available is
to use optical fiber delay lines to store optical packets and use
optical (bufferless) crossbar switches to route optical packets
through the fiber delay lines in a carefully designed manner so
that packets can be routed to the right places at the right times,
and hence exact emulations of the desired optical buffers can
be achieved.

The primary issue in such a Switched-Delay-Line (SDL)
approach is as follows: (i) The design of the delays of the
optical fiber delay lines. (ii) The design of the routing policy
performed by the optical crossbar switches, namely, the design
of how the inputs are connected to the outputs of the optical
crossbar switches. Apparently, such an optical buffer does not
have random-access capability and is not flexible to use. This

makes SDL design of optical buffers very complicated and
difficult.

In many packet-switched networks, the buffering schemes
needed have certain special arrival/departure patterns. By ex-
ploiting the special arrival/departure patterns of such buffering
schemes, the SDL approach has been successfully used to con-
struct a variety of optical queues in the last two-plus decades.
including, in particular, the constructions of optical priority
queues in [1]–[9]. Although our focus on the constructions of
optical priority queues in this paper is from the theoretical
point of view, we are aware of the importance of certain
practical feasibility issues such as router buffer sizing problem,
fault-tolerant capability, and limitation on the number of times
that an optical packet can recirculate through the optical
switches and the fiber delay lines (see Sections V-A and V-C
in [8] for details). For review articles on SDL constructions of
optical queues as well as related implementation and feasibility
issues, we refer to [10]–[15] and the references therein.

In this paper, we focus on SDL constructions of optical
priority queues with multiple inputs/outputs and time-varying
service capacity. Among the existing works [1]–[9] on the
constructions of optical priority queues, the works [1]–[8]
are on optical priority queues with single input and single
output and the work [9] is the only one on optical priority
queues with multiple inputs and multiple outputs. It was
first proposed in [1] to use an optical (M + 2) × (M + 2)
(bufferless) crossbar switch and M fiber delay lines for the
construction of an optical priority queue and the buffer size
achieved is O(M2). The proof in [1] was made simpler in
[2]. The buffer size O(M2) achieved in [1] was improved
to O(M3) in [3], was improved to O(M c) for any positive
integer c in [6], and was substantially improved to 2O(

√
M)

in [8]. By extending the constructions in [3] from single
input/output to multiple inputs/outputs, it was shown in [9]
that an optical N -to-K priority queue can be constructed using
an optical (M+N+K)× (M+N+K) (bufferless) crossbar
switch and M fiber delay lines. For the special case that
N = K, tt was also shown in [9] that the buffer size that can
be achieved is O(M3/N2). Furthermore, a theoretical upper
bound (K2 + 2K + N)2(M−N−K) log2 (1+1/N) = 2O(M/N)

on the buffer size that can be achieved by using optical
(bufferless) crossbar switches and M fiber delay lines was
given in [9] (we note that this upper bound reduces to the
upper bound 2M in [1] when N = K = 1).

An N -to-K priority queue with time-varying service capac-
ity c(t) and buffer size B is a network element with N arrival
links, K departure links, and N loss links (see Figure 1). The

504978-1-6654-9927-9/22/$31.00 ©2022 IEEE APCC 2022



B

d(t)

a(t)

N-to-K priority queue 
with time-varying 

service capacity c(t) 
and buffer size B

. .
 . 

Departure link 1
Departure link 2

Departure link K

. .
 . 

Loss link 1
Loss link 2

Loss link N

. .
 . 

Arrival link 1
Arrival link 2

Arrival link N

a1(t)
a2(t)

aN(t)

d1(t)
d2(t)

dK(t)

l1(t)
l2(t)

lN(t)

l(t)

c(t)

Fig. 1. An N -to-K priority queue with time-varying service capacity c(t)
and buffer size B.

service capacity of the queue at time slot t is c(t), and it
means that the queue can send out at most c(t) packets from
the departure links at time slot t, where 0 ≤ c(t) ≤ K (as there
are only K departure links). Each packet is associated with
a unique priority upon its arrival so that the following two
properties are satisfied: (i) Total order: every packet in the
queue has a distinct priority. (ii) Relative order: the relative
priority order between any two packets remains unchanged as
long as they are in the queue. When there are packets in the
queue and the service capacity of the queue is not zero at time
slot t, at most c(t) packets with the highest priorities are sent
out from the departure links. When there is a buffer overflow,
up to N packets with the lowest priorities are dumped through
the loss links.

It is clear that priority queues are very general types of
queues since packet arrival times, service capacities, and
priority assignment of packets can be arbitrary (as long as
the total order property and the relative order property are
satisfied). In particular, they subsume FIFO (resp., LIFO)
queues as special cases, where packets with earlier (resp.,
later) arrival times have higher priorities. Furthermore, they
can be used to implement optical output-buffered switches that
support the packetized version of the generalized processor
sharing (PGPS) policy (see Figure 3 in [9] for an illustration).

The constructions of optical N -to-K priority queues with
time-varying service capacity c(t) in this paper use the feed-
back system in Figure 2 consisting of an optical (kmn+N +
K)×(kmn+N+K) (bufferless) crossbar switch and k groups
of optical n-to-1 FIFO multiplexers with delay one (nFM1’s),
where the ith group has m parallel optical nFM1’s with the
same buffer size Bi (Bi ≥ 1) for i = 1, 2, . . . , k. An optical
nFM1 with buffer size B is defined as the concatenation of
an optical n-to-1 FIFO multiplexer (nFM) with buffer size
B − 1 and a fiber delay line with delay equal to one, where
the departure link of the nFM is connected to the input link
of the fiber delay line with delay one and an nFM with buffer
size B− 1 is simply an n-to-1 priority queue with buffer size
B − 1 whose service capacity is always equal to one.

In this paper, we extend and generalize the constructions in
[8] and show in Theorem 7 that the feedback system in Fig-
ure 2 can be operated as an optical N -to-K priority queue with
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Fig. 2. A construction of an optical N -to-K priority queue with time-varying
service capacity c(t) by using an optical (kmn+N+K)×(kmn+N+K)
(bufferless) crossbar switch and k groups of m parallel optical n-to-1 FIFO
multiplexers with delay one.

time-varying service capacity c(t). The main contributions of
this paper are as follows: (i) The priority queues considered in
this paper subsume those considered in all pervious works [1]–
[9] on the constructions of optical priority queues as special
cases (see Remark 1(i) for details). (ii) Our queueing model
with time-varying service capacity is not only more general but
also more realistic than that with fixed service capacity in the
only work [9] on the constructions of optical priority queues
with multiple inputs and multiple outputs (see Remark 1(ii)
for details). (iii) For the special case that N = K = 1, our
constructions in Theorem 7 subsume those in [9] as special
cases (see Remark 8 for details). (iv) For the special case that
N = K, we show that an optical N -to-N priority queue with
buffer size 2O(

√
M/N) can be constructed by using an optical

(M+2N)×(M+2N) (bufferless) crossbar switch and M fiber
delay lines. Our result 2O(

√
M/N) (exponential in

√
M/N )

greatly improves the best result O(M3/N2) (polynomial in
M/N ) in the literature (see Section II-D for details).

The rest of this paper is organized as follows. First, we
give a more detailed description of N -to-K priority queues
with time-varying service capacity in Section II-A. Then
we derive two intrinsic properties of buffering tags that are
independent of how an N -to-K priority queue is implemented
in Section II-B, and use these intrinsic properties to derive
two basic properties of buffering tags for the constructions in
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Figure 2 under our priority-based routing policy performed
by the crossbar switch in Section II-C. Finally, we show in
Section II-D that the feedback system in Figure 2 can be op-
erated as an optical N -to-K priority queue under our priority-
based routing policy, and perform a complexity analysis for
our constructions with maximum buffer size. We conclude this
paper in Section III.

II. N -TO-K PRIORITY QUEUES AND PRIORITY-BASED
ROUTING POLICY

As in most works on SDL constructions of optical queues in
the literature, in this paper we consider the following discrete-
time settings: (i) Time is slotted and synchronized. (ii) Packets
are of the same size so that a packet can be transmitted through
a link within a time slot. (iii) An optical M ×M (bufferless)
crossbar switch is a network element with M input links and
M output links that can realize all of the M ! permutations
between its inputs and its outputs. (iv) A fiber delay line with
delay d is a network element with one input link and one
output link that requires d time slots for a packet to traverse
through. We note that variable-size packets can be easily taken
care of by introducing packet segmentation at the source and
packet reassembly at the destination. For conciseness, we write
time slot t as “slot t” in this paper.

Note that there is at most one packet in a link at any slot
(as a packet can be transmitted through a link within a slot by
assumption (ii) above). Thus, we can characterize a link by its
link state, say a link is in state 1 (resp., 0) at slot t if there is
a packet (resp., there is no packet) in the link at slot t.

Furthermore, in this paper we assume that every network
element is started from an empty system at slot t = 0.

A. N -to-K Priority Queues

For an N -to-K priority queue as shown in Figure 1, we
denote ai(t) (resp., di(t) and �i(t)) as the link state of arrival
(resp., departure and loss) link i at slot t for i = 1, 2, . . . , N
(resp., i = 1, 2, . . . ,K and i = 1, 2, . . . , N ). Let a(t) =∑N

i=1 ai(t) (resp., d(t) =
∑K

i=1 di(t) and �(t) =
∑N

i=1 �i(t))
be the number of arrival (resp., departure and loss) packets
from the arrival (resp., departure and loss) links at slot t. Also
let q(t) be the number of packets stored in the buffer of the
queue at slot t.

Then an N -to-K priority queue with time-varying service
capacity c(t) and buffer size B is characterized by the follow-
ing five properties at all slots t ≥ 1:

(P1) Flow conservation: Packets arriving from the arrival
links are either stored in the buffer or transmitted through the
departure links or the loss links. Therefore, we have q(t) =
q(t− 1) + a(t)− d(t)− �(t).

(P2) Nonidling: If there are packets in the queue at slot t
and the service capacity of the queue at slot t is not zero, i.e.,
q(t−1)+a(t) > 0 and c(t) > 0, then there are min{q(t−1)+
a(t), c(t)} departure packets at slot t (as the queue can send
out at most c(t) packets from the departure links at slot t);
otherwise, there are no departure packets at slot t. Therefore,
we have d(t) = min{q(t− 1) + a(t), c(t)}.

(P3) Maximum buffer usage: If there is a buffer overflow at
slot t, i.e., q(t − 1) + a(t) − d(t) > B (note that q(t − 1) +
a(t) − d(t) is the number of packets in the queue, excluding
the departure packets, at slot t), then there are q(t−1)+a(t)−
d(t) − B loss packets at slot t; otherwise, there are no loss
packets at slot t. Therefore, we have �(t) = (q(t−1)+a(t)−
d(t)−B)+, where we have denoted x+ = max{x, 0}.

(P4) Priority departure with prioritized departure links: If
there are departure packets at slot t, i.e., d(t) > 0, then
the departure packets are the d(t) highest-priority packets
in the queue at slot t and they depart from departure links
1, 2, . . . , d(t) in the order of decreasing priorities.

(P5) Priority loss with prioritized loss links: If there are
loss packets at slot t, i.e., �(t) > 0, then the loss packets are
the �(t) lowest-priority packets in the queue at slot t and they
are dumped through loss links 1, 2, . . . , �(t) in the order of
decreasing priorities.

Remark 1 (i) The priority queues considered in this paper
subsume those in [1]–[9] as special cases. Specifically, the
N -to-K priority queue considered in this paper specializes to
those in [1]–[8] when N = K = 1, and specializes to that in
[9] when its service capacity c(t) assumes only two values,
i.e., 0 and K. We note that in [9] the notation c(t) is used to
indicate whether the queue is enabled or not at slot t, namely,
if the queue is enabled (resp., disabled) at slot t, then c(t) = 1
(resp., c(t) = 0) and at most K packets (resp., no packets)
can be sent out from the departure links at slot t, meaning
that its service capacity is K (resp., 0) at slot t.

(ii) Our queueing model with time-varying service capacity
is not only more general but also more realistic than that in
[9]. For example, consider the scenario that the K departure
links are shared among many network elements. In such a
scenario, the service capacity of the queue is the number of
departure links allocated to the queue for its use by certain
resource management scheme (which is more involved and is
beyond the scope of this paper). Clearly, it is more flexible and
more realistic for the resource management scheme to allocate
any number of the departure links to the queue at any slot (note
that the queue in [9] can only be allocated either none or all
of the K departure links at any slot). As another example,
consider the scenario that the service capacity is proportional
to the available channel capacity/bandwidth which may fluc-
tuate over time (e.g., in a wireless communications network,
the channel capacity/bandwidth fluctuates over time due to
many effects such as fading). In such a scenario, the service
capacity of the queue is time varying in nature as it reflects
the fluctuation of the channel capacity/bandwidth over time.

B. Intrinsic Properties of Buffering Tags

Consider the network element in Figure 1. We introduce
tags and buffering tags that will be used in our priority-based
routing policy in Section II-C. A packet p in the network
element at slot t is assigned a unique positive integer τp(t),
called the tag of packet p at slot t, to indicate its priority
level so that the ith-highest-priority packet in the network

506



element at slot t has a tag equal to i. Thus, the q(t−1)+a(t)
packets in the network element at slot t are assigned tags
from 1 to q(t − 1) + a(t) in the order of decreasing priority
(note that a packet with smaller tag has higher priority than
a packet with larger tag). Furthermore, a packet p that has
to be buffered in the network element at slot t is assigned
a unique positive integer τ̃p(t), called the buffering tag of
packet p at slot t, so that the ith-highest-priority packet among
all of the packets that have to be buffered in the network
element at slot t has a buffering tag equal to i. Therefore,
the q(t − 1) + a(t) − d(t) − �(t) packets that have to be
buffered in the network element at slot t are assigned buffering
tags from 1 to q(t − 1) + a(t) − d(t) − �(t) in the order of
decreasing priority (note that a packet with smaller buffering
tag has higher priority than a packet with larger buffering tag).

Consider a packet p in the network element at slot t (note
that packet p is either a packet buffered in the network element
at slot t − 1 or a packet from one of the arrival links at slot
t). We denote ap(t) (resp., dp(t) and �p(t)) as the number
of arrival (resp., departure and loss) packets at slot t with
priorities higher than packet p.

(i) If packet p has to be buffered in the network element at
slot t and the properties (P4) and (P5) are satisfied at slot t,
then we have dp(t) = d(t) and �p(t) = 0, and hence it is clear
from the definition of buffering tag that τ̃p(t) = τp(t)− d(t).

(ii) If packet p is buffered in the network element at slot
t− 1 and the property (P1) is satisfied at slot t− 1, then there
is no internal packet loss in the network element at slot t− 1
and hence it follows that τp(t) = τ̃p(t− 1) + ap(t).

(iii) If packet p is buffered in the network element at slot
t− 1 and has to be buffered in the network element at slot t,
the property (P1) is satisfied at slot t − 1, and the properties
(P4) and (P5) are satisfied at slot t, then it follows from (i)
and (ii) above that

τ̃p(t) = τ̃p(t− 1) + ap(t)− d(t). (1)

In the following, we derive two intrinsic properties of
buffering tags for the network element in Figure 1.

Theorem 2 (Change of a buffering tag in a slot) Consider
the network element in Figure 1. Suppose that a packet p is
buffered in the network element at slot t − 1 and has to be
buffered in the network element at slot t, and suppose that the
property (P1) is satisfied at slot t− 1 and the properties (P4)
and (P5) are satisfied at slot t. Then we have

−K ≤ τ̃p(t)− τ̃p(t− 1) ≤ N. (2)

Proof. It is easy to see that (2) follows from (1), 0 ≤ ap(t) ≤
N , and 0 ≤ d(t) ≤ K

Theorem 3 (Change of the difference between two buffer-
ing tags in a slot) Consider the network element in Figure 1.
Suppose that two packets, say packet p1 and packet p2, are
buffered in the network element at slot t − 1 and have to be
buffered in the network element at slot t, where packet p1 has
higher priority than packet p2, i.e., τ̃p1(t − 1) < τ̃p2(t − 1),

and suppose that the property (P1) is satisfied at slot t − 1
and the properties (P4) and (P5) are also satisfied at slot t.
Then we have

0 ≤ [τ̃p2(t)− τ̃p1(t)]− [τ̃p2(t− 1)− τ̃p1(t− 1)] ≤ N. (3)

Proof. It is easy to see that (3) follows from (1) and 0 ≤
ap2

(t)− ap1
(t) ≤ N .

Remark 4 We note that the results in Theorem 2 and Theo-
rem 3 are intrinsic properties of buffering tags, and they are
independent of how an N -to-K priority queue is implemented.
Specifically, they apply to any N -to-K priority queue that
satisfies the properties (P1), (P4), and (P5). Furthermore, they
could possibly be useful in devising better constructions of
optical N -to-K priority queues in future works.

C. The Priority-Based Routing Policy

The idea behind the priority-based routing policy is to route
packets at the input links of the crossbar switch in Figure 2
that have to be buffered in the queue to the k groups of nFM1’s
according to their buffering tags.

For this, we let Uk be the targeted buffer size of the
optical N -to-K priority queue in our construction, and we
associate the ith group of nFM1’s in Figure 2 with a unique
set Ψi = {Ui−1 + 1, Ui−1 + 2, . . . , Ui} of buffering tags for
i = 1, 2, . . . , k, where

U0 = 0 < U1 < U2 < · · · < Uk. (4)

It is clear that the sets Ψ1,Ψ2, . . . ,Ψk form a partition of
the set {1, 2, . . . , Uk} of buffering tags, and we have |Ψi| =
Ui − Ui−1 and Ui =

∑i
j=1 |Ψj | for i = 1, 2, . . . , k. Let Li =

Ui−1 + 1 so that Li ≤ Ui and we can write Ψi as Ψi =
{Li, Li + 1, . . . , Ui} for i = 1, 2, . . . , k.

Then the crossbar switch in Figure 2 is operated according
to the following priority-based routing policy at all slots t ≥ 1,
where the parameters s1 and s2 satisfy 1 ≤ s1, s2 ≤ k − 1.

(R1) Departure packets: If there are packets in the queue
at slot t and the service capacity of the queue at slot t is not
zero, i.e., q(t−1)+a(t) > 0 and c(t) > 0, then the min{q(t−
1) + a(t), c(t)} highest-priority packets (if any) among all of
the packets from the N arrival links or the m(s1 + 1) output
links of the first s1 + 1 groups of nFM1’s at slot t are routed
to departure links 1, 2, . . . ,min{q(t − 1) + a(t), c(t)} in the
order of decreasing prioritie. Otherwise, no packets are routed
to the departure links at slot t.

(R2) Loss packets: If there is a buffer overflow at slot t, i.e.,
q(t−1)+a(t)−c(t) > B, then the q(t−1)+a(t)−c(t)−Uk

lowest-priority packets (if any) among all of the packets from
the N arrival links or the m(s2 + 1) output links of the last
s2 + 1 groups of nFM1’s at slot t are routed to loss links
1, 2, . . . , q(t−1)+a(t)− c(t)−Uk in the order of decreasing
priorities. Otherwise, no packets are routed to the loss links at
slot t.

(R3) Round-robin routing at the k groups of nFM1’s: A
packet p at the input links of the crossbar switch that has to
be buffered in the queue and has a buffering tag τ̃p(t) ∈ Ψi
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is routed to the ith group of nFM1’s. Furthermore, packets
routed to a group of nFM1’s are distributed to the nFM1’s
in that group in a round-robin fashion (see [8] for details) so
that load balancing among the nFM1’s in that group can be
achieved and hence the buffering capacity of the nFM1’s can
be fully utilized.

In the following, we use the intrinsic properties in Sec-
tion II-B to derive two basic properties of buffering tags under
our priority-based routing policy. Due to space limit, their
proofs can be found in the full version of this paper [16].

Theorem 5 (Range of the buffering tags at each group
of nFM1’s) Assume that the feedback system in Figure 2 is
operated under the routing policy (R1)–(R3) at all slots, the
property (P1) is satisfied up to slot t − 1, and the properties
(P4) and (P5) are satisfied up to slot t. Suppose that a packet
p is buffered in the ith group of nFM1’s at slot t for some
1 ≤ i ≤ k. Then we have

Li −K(Bi − 1) ≤ τ̃p(t) ≤ Ui +N(Bi − 1). (5)

Theorem 6 (Number of packets buffered in or routed to
each group of nFM1’s in a slot) Assume that the feedback
system in Figure 2 is operated under the routing policy (R1)–
(R3) at all slots, the property (P1) is satisfied up to slot t− 1,
and the properties (P4) and (P5) are satisfied up to slot t.
Suppose that two packets, say packet p1 and packet p2, are
buffered in or routed to the ith group of nFM1’s at slot t for
some 1 ≤ i ≤ k. Then we have

|τ̃p1
(t)− τ̃p2

(t)| ≤ |Ψi|+max{N,K}(Bi − 1)− 1. (6)

Therefore, there are at most |Ψi|+max{N,K}(Bi−1) packets
buffered in or routed to the ith group of nFM1’s at slot t.

D. The Main Results

In this section, we use the intrinsic and basic properties of
buffering tags to show that the feedback system in Figure 2 can
be operated as an optical N -to-K priority queue with time-
varying service capacity under the routing policy (R1)–(R3).
The proof of the following theorem can be found in [16].

Theorem 7 Assume that the feedback system in Figure 2
is operated under the routing policy (R1)–(R3) at all slots.
Suppose that 1 ≤ s1, s2 ≤ k − 1, m ≥ max{N,K}, and
n,B1, B2, . . . , Bk, |Ψ1|, |Ψ2|, . . . , |Ψk| satisfy the following
conditions (A1)–(A3):

(A1) n ≥ min{s1 + s2 + 1, k}+ 1.
(A2) Bi ≥ 1 for i = 1, 2, . . . , k,

KBi ≤

{
Ui−1 +K, if 1 ≤ i ≤ s1 + 1,

Ui−1 − Ui−s1−1, if s1 + 2 ≤ i ≤ k,

and

NBi ≤

{
Ui+s2 − Ui, if 1 ≤ i ≤ k − s2 − 1,

Uk − Ui +N, if k − s2 ≤ i ≤ k.

Note that we can see from the above inequalities that B1 =
Bk = 1. Also recall that Ui =

∑i
j=1 |Ψj | for i = 1, 2, . . . , k.

(A3) 1 ≤ |Ψi| ≤ (m −max{N,K})Bi + max{N,K} for
i = 1, 2, . . . , k.

Then the feedback system in Figure 2 can be operated as
an optical N -to-K priority queue with time-varying service
capacity c(t) and buffer size Uk at all slots t ≥ 1.

Remark 8 We note that when N = K = 1 and s1 = s2 = s,
the condition (A1) becomes n ≥ min{2s + 1, k} + 1, the
condition (A2) becomes B1 = Bk = 1, Bi ≥ 1 for i =
2, 3, . . . , k,

Bi ≤

{
Ui−1 + 1, if 2 ≤ s+ 1,

Ui−1 − Ui−s−1, if s+ 2 ≤ i ≤ k,

and

Bi ≤

{
Ui+s − Ui, if 1 ≤ i ≤ k − s− 1,

Uk − Ui + 1, if k − s ≤ i ≤ k − 1,

and the condition (A3) becomes 1 ≤ |Ψi| ≤ (m − 1)Bi + 1
for i = 1, 2, . . . , k. It is easy to see that the conditions (A1)
and (A3) in [8] are the same as the conditions (A1) and (A3)
above, and the condition (A2) in [8] requires that Bi ≤ Ui−1

for 2 ≤ i ≤ s+1 and Bi ≤ Uk−Ui for k−s ≤ i ≤ k−1 so that
it is more restrictive than the condition (A2) above. Therefore,
when N = K = 1 and s1 = s2 = s, our constructions in
Theorem 7 subsume those in [8] as special cases.

For the special case that N = K, s1 = s2 = s, and
m is an integer multiple of N , we show that by using an
optical (M + 2N) × (M + 2N) (bufferless) crossbar switch
and M fiber delay lines, we can construct an optical N -to-N
priority queue with buffer size Uk = 2O(

√
αM/N), where α is

a constant that depends on s, k, and m (see [16] for details).
Our result (exponential in

√
M/N ) substantially improves the

best known result (polynomial in M/N ) in [9].

III. CONCLUSION

In this paper, we obtained a class of SDL constructions
of optical priority queues with multiple inputs/outputs and
time-varying service capacity under our priority-based routing
policy. We derived two intrinsic properties and two basic
properties of buffering tags and used them to show that the
feedback system in Figure 2 can be operated as an optical N -
to-K priority queue with time-varying service capacity under
our priority-based routing policy. We also showed that by
using an optical (M +2N)× (M +2N) (bufferless) crossbar
switch and M fiber delay lines, an optical N -to-N priority
queue with buffer size 2O(

√
M/N) (exponential in

√
M/N )

can be constructed, which greatly improves the best known
result O(M3/N2) (polynomial in M/N ) in the literature.
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