
WeBLE: A BLE-based system compliant with WoT
architecture

Yi-Hsiu Chiu∗, Chun-Feng Liao∗†
∗Department of Computer Science

†Program in Digital Content and Technologies
National Chengchi University, Taipei, Taiwan

Abstract—The W3C organization has recently continued to
propose recommendation for WoT (Web of Things). In order
for BLE, which has a high market share in IoT application, to
comply with the WoT recommendation, this paper propose a
proprietary application-level gateway and WeBLE (Web of
BLE) device that allow clients to treat BLE devices as WoT node
and increase the interoperability of BLE devices.

Keywords—Internet of Things, Web of Things, Bluetooth Low
Energy, CoAP

I. INTRODUCTION
The advancement of IoT (Internet of Things) technologies

is maturing the implementation of Smart Environments and
their application in daily life. Recently, W3C has proposed
WoT (Web of Things) recommendations [1]. In WoT
architecture, any operation should be based on the web
architecture using RESTful API and devices should be
described by WoT Thing Description. WoT improves the
interoperability and usability of IoT. However, due to power
consumption and computing power considerations. IoT
devices typically use a different protocol stack than Internet
devices. This makes it difficult for IoT devices to
communicate in WoT architecture directly. While 6LoWPAN
technology provides IPv6 addressing capabilities for IoT
devices, enabling IoT devices to run application layer
protocols that are compliant with WoT architecture. For
example, Mohiuddin et al. employed SSLP (Simple Service
Location Protocol) and CoAP (Constrained Application
Protocol) on IEEE 802.15.4 and 6LoWPAN-based nodes [2].
Among them, CoAP is a RESTful protocol that conforms to
WoT architecture. But 6LoWPAN is only available for IEEE
802.15.4. For non-IEEE 802.15.4-based protocols, such as
BLE (Bluetooth Low Energy), although it also has 6LoWPAN
for BLE, it is not common in practice and the system was
reported to be unstable by Chawathaworncharoen et al. [3]. In
order to make non-IEEE 802.15.4-based protocol compliant
with WoT. This paper uses BLE as an example and propose a
proprietary gateway and WeBLE (Web of BLE) device to
solve the above problem from application-level.

II. SYSTEM OVERVIEW

The system overview in this paper is shown in Figure 1.
On the right side of the figure, we implemented WeBLE (Web
of BLE) devices which are based on BLE. And in the middle,
there is a gateway responsible for registering the surrounding
WeBLE services and providing clients to discover or request
WeBLE services using CoAP from the internet. For clients
(left in the figure), they won’t feel like they are
communicating with the gateway but interacting with the
WoT node directly. To sum up, our system empowers BLE to
comply with WoT architecture through the design of the
gateway and WeBLE device. And in the next chapter, we shall
explain the design details of WeBLE devices and the gateway
with a complete system flow (service registration, service
discovery and request routing).

Fig. 1. System overview

III. SYSTEM DESIGN

A. Service Registration
As with most IoT networks, our system uses a service

directory to manage services in the network to reduce device
wake-up time. The specific way is that the gateway uses GAP
and GATT to discover WeBLE devices and their services and
write into the service directory periodically. But how does the
gateway identify whether the device is a WeBLE device or a
normal BLE device? For this purpose, our system refers to
IPSP (Internet Protocol Service Profile) in RFC 7668 [4]. We
propose WeBLE Façade Service to enable device to declare
itself as WeBLE device. Specifically, WeBLE Façade service
is a specific BLE service UUID, device can carry this UUID
in the GAP broadcast packet to let observers know that it
provides this service. In this way, the device can declare itself
as a WeBLE.

B. Service Discovery
With service directory and service registration, the

gateway can manage services in the network. And for clients
to know what services are provided in this network, our
system provides service discovery. As mentioned, our system
is compliant with WoT architecture for clients, so for the client
side, we use CoAP to communicate. And CoAP usually uses
well-known URI to implement service discovery, so our
system uses well known URI as the service discovery
interface. Clients can send a request to the gateway that
matches well-known URI format. Upon receipt of the request,
the gateway will query the service directory for the matching
service and send it back to the clients.

C. Request Routing
To allow clients to interact with WeBLE services using

WoT style. The gateway in our system needs a mechanism to
convert the CoAP request to a BLE GATT request and then
route it to the target device. According to the format of the
request, the mechanism needs to do the following conversions:

 , ℎ,  ⇒
 , ,  (1)

453978-1-6654-9927-9/22/$31.00 ©2022 IEEE APCC 2022

 In equation (1), we can see that the conversion can be
divided into three parts: 1) IP to BLE address conversion, 2)
Request methods to characteristic properties conversion, and
3) URL to UUID conversion. Each part is explained below:

• IP to BLE address conversion: For the conversion of
IP to BLE addresses, we refer to Stateless Address
Autoconfiguration in RFC 7668 [4], which allows a
48-bit BLE address to be converted to a 128-bit ipv6
stateless address. The specific conversion is to insert
the 0xFFFE in the middle of the BLE address to form
a 64-bit IID (Interface Identifier), and then add the
IPv6 local address prefix to form a 128-bit ipv6
address.

• Request methods to characteristic properties
conversion: As mentioned, devices in our system (i.e.
WeBLE) are based on BLE, and BLE GATT
characteristic has three properties for clients to interact
with the device, which are read, write and notify. To
achieve our research objectives, we need to correspond
these properties with CoAP request methods. Table 1
demonstrates correspondence of properties. Read and
write can be corresponded to GET and PUT intuitively.
Notify provides server push capability for BLE
characteristic, which cannot be corresponded with
ordinary request methods directly, but needs to achieve
through the observe flag defined by RFC 7641 [5].

TABLE I. CORRESPONDENCE OF PROPERTIES

CoAP request methods BLE characteristic properties

GET READ

PUT WRITE

GET + Observe flag NOTIFY

• URL to UUID conversion: CoAP URLs are string-
based, and most of them have semantics. However, in
BLE GATT, services and characteristics are
represented as hexadecimal-based UUIDs. In order to
convert it, we need to query the UUID's feature
description from 16-bit UUID numbers document and
use it as the name of that UUID [6]. For example, in
the document, the UUID {0x180f, 0x2a19} represents
the “Battery” service and “Battery Level”
characteristic. So we can use the URL
{Battery/BatteryLevel} to denote the UUID {0x180f,
0x2a19}. However, self-defined UUIDs are not
available from the document, so we define a specific
characteristic and descriptor to name the service and
characteristic UUID, called Service Name
Characteristic and Characteristic Name Descriptor.
Specific approach as shown in Figure 2, add Service
Name Characteristic and Characteristic Name
Descriptor under target service and characteristic then
fill in the name in value. In this way, we can get the
name of the target by reading its Service Name
Characteristic or Characteristic Name Descriptor.

Fig. 2. Conversion mechanism for self-defined UUID

IV. EVALUATION

 This section reports and discuss the evaluating result of our
system. Our system uses a Raspberry Pi to simulate the
gateway. Raspberry Pi has multiple network interfaces (e.g.,
Ethernet, WLAN and Bluetooth) that allow it to communicate
with clients and WeBLE devices over Ethernet and BLE. For
the WeBLE device, we simulated it with NodeMCU 32s,
which provides BLE interface and is suitable for installation
in IoT devices. And for the client, we simulate it with a normal
PC computer.

 For the evaluation of our system, we designed an
experiment to compare the request/response time of our
system with BLE network. The result is shown in figure 3.
From the diagram, we can see that the time difference is not
significant, for each property, the additional time spent by
WeBLE is less than 5%. However, compared to BLE, WeBLE
allows the client to treat BLE-based devices as web nodes,
which increases the interoperability of BLE.

Fig. 3. Request/Response time comparison between WeBLE and BLE

REFERENCES
[1] Kovatsch, M., Matsukura, R., Lagally, M., Kawaguchi, T., Toumura,

K., and Kajimoto, K. (2020). Web of things (wot) architecture,
recommendation. Technical report, World Wide Web Consortium
(W3C).

[2] Mohiuddin, J., Bhadram, V., Palli, S., and Koshy, S. S. (2014).
6LoWPAN based service discovery and RESTful web accessibility for
Internet of Things. In 2014 International Conference on Advances in
Computing, Communications and Informatics (ICACCI) (pp. 24-30).
IEEE.

[3] Chawathaworncharoen, V., Visoottiviseth, V., and Takano, R. (2015).
Feasibility evaluation of 6LoWPAN over Bluetooth low energy. arXiv
preprint arXiv:1509.06991.

[4] Nieminen, J., Savolainen, T., Isomaki, M., Patil, B., Shelby, Z., &
Gomez, C. (2015). Ipv6 over bluetooth (r) low energy (No. rfc7668).

[5] Hartke, K. (2015). Observing resources in the constrained application
protocol (CoAP) (No. rfc7641).

[6] BLE-UUID (2021). 16-bit uuid numbers document, rev. 2021-12-03.
Technical report, Bluetooth SIG, Inc.

454

