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Abstract--With more than a decade of research and 
development, the Internet of Things (IoT) and Cyber-Physical 
Systems (CPS) are both promising solutions for various novel 
healthcare applications. This proves significant for supporting 
data collection on human movement detection and recognition. 
The paper discusses a novel concept of the IoT for healthcare 
applications. The focus is on the follow-up of prehabilitation 
programs that are essential for pre-operative patients. The 
solution caters for a flexible approach that benefits both 
supervised and unsupervised prehabilitation programs. This 
paper describes the overall system architecture considering a 
distributed computation model that includes the wearable 
sensors, the access points and the edge or cloud-related 
computing. The model can act as a baseline for a digital twin 
that could follow up the prehabilitation program 
implementation of a preoperative patient and offer the 
necessary information relevant to recommendations and alerts. 

Keywords— IoT, Prehabilitation, Wearable sensor device, 
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I. INTRODUCTION  

Major surgery is associated with a significant deterioration in 
quality of life[1]. Physical fitness and level of activity are 
considered important factors for patients undergoing major 
abdominal surgery[2]. Prehabilitation is an emerging concept 
and can be defined as the process enabling patients to 
withstand the stressors associated with surgery though 
augmenting functional capacity[3]. There are two main 
prehabilitation models currently used on patients undergoing 
major surgery: supervised and unsupervised programmes[4]. 
Both programmes share key prehabilitation elements such as 
a time frame of four to six weeks and the implementation of 
physical exercise (i.e. walking, running, cycling, cross 
trainer, rowing, treadmill, step up, leg press, and staircase 
ascending/descending). Type and intensity of the physical 
activity, time of each activity, frequency, and auxiliary 
factors such as bedrest all have impact on the prehabilitation 
program. Patients who are involved in the supervised 
programme usually perform the prescribed physical exercises 
under the direct supervision of a healthcare professional. This 
type of prehabilitation is usually limited to those individuals 
who live in close proximity to a hospital [5]. The home-based 
prehabilitation programme (unsupervised) offers flexibility 
for patients to perform the prescribed activity in their home 
or a community centre or gymnasium [6]. Another advantage 
of the home-based programme is that it 
overcomes geographical barriers so that patients living 
outside the region may access services that would not 
typically be available to them due to the distance and 

time required to travel to the referral centres[6, 7]. Despite 
being home-based, unsupervised prehabilitation programmes 
often include prescribed physical exercises that are similar to 
those used in a supervised prehabilitation programme [8]. 
One of the key problems with unsupervised prehabilitation 
programmes is that there is minimal direction and advise on 
exercise progression from a health professional resulting poor 
compliance and failure to achieve key prehabilitation goals.  
 
Currently, most established prehabilitation programs are run 
in key medical centres, and a significant number of patients 
undergoing major surgery are unable to attend these programs 
because of obstacles such as limited number of resources, 
geographical isolation, work commitments, and long waiting 
lists[6, 7]. Telehealth has the potential to address this health 
disparity and improve health outcomes [9] by providing an 
alternative for those who are unable to travel due to caring or 
work commitments, conflicting clinical appointments, or 
treatment-related symptoms [10, 11].  A mixed mode 
prehabilitation programme supported by the use of IoT could 
be a viable option for those who are unable to visit the 
physiotherapy clinic on a regular basis [12]. The mixed mode 
gives patients the option of performing physical activities at 
the physiotherapy centre, at home, or in the gym. By 
recruiting key elements from both existing prehabilitation 
programmes (supervised and unsupervised), this model has 
integrated the advantages of both existing prehabilitation 
programmes while minimising the disadvantages 
[12]. Furthermore, the use of IoT and a cloud-based integrated 
solution allows the program's integrity to be monitored 
through data collection, analysis, and timely interaction. 
The aim of this paper is to provide an overview of the IoT 
system implementation based on the integration of wearable 
sensor devices (WSD), a mobile internet access device or 
gateway, and edge or cloud backup tools that can help with 
advanced analysis such as movement recognition and long 
term monitoring of preoperative prehabilitation programs. 
Transparency of key events to the patient, caregiver and health 
providers are described throughout the design. 
This paper is organised as follows. Section II will provide a 
brief introduction on prehabilitation programmes and their 
associated challenges. Section III presents the activity 
recognition challenges and smart monitoring. A mixed mode 
prehabilitation program supported by IoT CPS case study is 
then discussed in IV. Finally, conclusions are made in Section 
VI. 
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II. IOT ARCHITECTURE SUPPORTING THE MIXED MODE 
PREHABILITATION MODEL 

Figure 1 shows the three main components of the IoT 
solution. These are the wireless wearable device, the smart 
mobile access point or gateway, and the remote cloud. These 
three main components which host the distributed software 
and generated data for supporting the mixed mode 
prehabilitation model. The first component is the wearable 
device that is attached to the patient and collects movement 
data. It has to be active over the specific duration of data 
collection. This is normally during the daytime where 
individuals undertaking prehabilitation perform activities of  
daily living and specifical prescribed exercises. Preliminary 
analysis of the nature of data and possible event recognition 
may significantly help support communicating the 
information with the upper level. In general, most of its 
processing is relevant to short term data collection.   

 
Figure .1. Main physical components of the IoT system that host the 
operational software and generated data. 

The second compoent is the smart mobile access point.  This 
covers the connectivity of the wearable device with the cloud 
through the internat and supports the medium term data 
management and processing. This may relate to a single user 
with a single or multiple sensing points on the same user, but 
could also involve a small group of users like members of 
family, rest home residents, or even a section of a public gym. 
Usage duration might be from few houres to a whole day. The 
mobile access point might be available at a given location 
within a residential buiding but is portable enough to 
accompanied the user if they move to different loactions. It 
should allow for delay tolerance and opportnistic 
connectivity. 
The third component is the cloud level (Thinkspeak). At the 
cloud level there is more involved data management and 
processing over the prehabilitation program lifetime. This 
should be the centre for the overall operation and includes 
basic level data management and processing as well as 
interaction interface between users and IoT system. At the 
more involved level it performs system and prehabilitation 
program modelling and virtualization that facilitate 
operational cross-checking and facilitate some level of 
expertise intelligence.   

A. Werable Sensor Device WSD 
The WSD shown in figure 2 a and b is the front-end 

component of the IoT cyber-physical system and is 
responsible for sensing the movement and capturing raw data 
from the user. The architecture of the WSD for human 
physical activity consists of five main functionalities (see 

Figures 2.a, and 2.b), namely movement sensing, timestamped 
data acquisition and calibration, data compression and feature 
recognition, data storage, and data communication. Further 
information about each of these functions is describe in our 
previous works [12, 13] . The WSD size, power consumption, 
computation functionality requirements, data storage, and 
communication requirements are all examined in this design. 

 
Figures. 2. a. the combinations of Microduino boards with 3.7DC battery, b. 
final WSD inside 3D printed box.  

The WSD is attached to the patient’s ankle [13] and it’s small 
size and light weight are the key features that need to be 
considered. In this study, the Microduino stack (sensors, 
microcontroller, and other supporting boards) were used to 
offer the flexibility for testing the various combinations of 
hardware and software functional components. We have 
investigated the effects of different operational modes on the 
energy consumption of the wearable device using a ½ AA 
rechargeable battery of 700 mAh at 3.7V. The current 
consumption can be reduce by 20% (see details in the table 1) 
which allows the battery to function the WSD continuously 
for 22 hours at full operational mode. This covers the full day 
comfortably.  

TABLE 1. COMPARISON BETWEEN NORMAL AND OPTIMISING OPERATION 
MODE.  SNO= SENSOR NUMBER  

Long term storage of data is considered within the WSD, and 
our previous work found that storing the raw and processed 
Fast Fourier Transform (FFT) every four seconds [13] was the 
most acurate and efficient way of storing data (see Figure 3). 
This was chosen for two reasons. Firstly, the time spent on 
storage of both processed and raw data is only slightly more 
than the that used on raw data alone with no significant effect 
on the processing. Secondly, storing raw data provides a long-
term back up for both researcher and healthcare staff to use for 
further analysis.   

 
Figure. 3. The long-term storage pattern in the WSD SD card.  

S. 
No 

Sensing 
Board 

Idle Mode 
Current(mA) 

Operational 
Mode Current 

(mA) 

Optimized 
Mode 

Current(mA) 
1 Core RF 22 22-24 22 
2 10 DOF 0.01 0.02-0.06 0.03 
3 SD card 1.5 5-7 4.46 
4 NRF24 2.8 11.3-13.5 4.925 
5 RTC 0.032 0.05-0.1 0.07 

Total Current 
Consumed 

26.3mA 38.37-44.66 
mA 

31.475 mA 

a b 
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As discussed in previous works [13] the128Hz sampling 
frequency of the 3D accelerometer data was chosen to detect 
the movement frequencies during physical activity for elderly 
people. A four-second duration is the minimum data-
collection window at this sampling rate, enabling accurate 
frequency analysis and movement identification without any 
distortions in information gathering. Our previous work found 
that increasing the duration of the window did not  reduce the 
power consumption and nor affect the signal quality. 
However, increasing the duration of the data-collection 
window led to missing some data during the collection 
process. Furthermore, an increase in the time gap between 
each data transmission to the upper level (gateway) will 
reduce data traffic and increase the number of serving nodes, 
and the latency of activity recognition will be longer, and the 
performance of the system for the activity recognition will 
reduce.  

Different scenarios were examined to optimise the four-
second data transmission of raw 512 (XYZ data), filtered 128 
sampled data (XYZ-DC offset) epochs, and processed FFT 
data (Amplitude and Frequency) to the gateway. The best-case 
scenario was sending fully processed data (FFT amplitude and 
frequency data) every four seconds, which resulted in minimal 
loss of data during transmission from WSD to the Gateway 
(RPi). Another advantage of transmitting the processed 
amplitude and frequency data every four seconds is the lower 
minimal data transmission rate of 250 kbps for the NRF24L0  
radio transmitter (Tx) device. This lower transmission rate 
enabled an increase in the Tx range and reduced the traffic at 
the front-end radio NRFL0 receiver (Rx). This also enhanced 
the overall Tx/Rx performance by offering spare time for the 
Tx in case there was no acknowledgement received from the 
Rx.  

B. IoT gateway  
Raspberry Pi (Rpi) has been selected as an example 

gateway and edge computing device in this IoT system. The 
main reason for selecting the RPi as an IoT gateway is that it 
is a single board computer with a full operating system [14]. 
In this study two types of RPi were used: the Raspberry pi 3B 
(RPi3B) as a base station gateway; and the Raspberry pi Zero 
W(RPiZW) as a mobile gateway (see figure 4 a and b). 

 
Figure. 4. a. RPi3B as base station gateway, b. RPiZW as a portable gateway. 

The light weight and reasonably small size of the RPiZW and 
WSD have been designed for comfort and ease for the 
participants. The gateway features have been designed to 
support the prehabilitation program in terms of physical 
activity recognition, time period of each activity, and activity 
intensity level. The gateway is able to handle multiusers 
(WSD) simultaneously, enable the storage of short-term and 
long term raw and processed data, perform real-time 
processing and transmitting data to the cloud, cover the 
discontinuity transmitting data (Internet disconnections). The 

use of smart monitoring and activity detection techniques 
were considered in this design as well.    
   The gateway code was designed and implemented to support 
the mixed mode prehabilitation programme in terms of multi-
sender (WSD) data receiving and analysis, activity 
recognition, short-term data repository, detecting the key 
elements and boundaries of the mixed mode prehabilitation 
model, and calculating the accumulated time and gain and 
then sending. The whole processed data can be transmitted to 
the cloud TS for further analysis as shown in Figure 5 below. 
 

 
 Figure. 5. Gateway architecture and feature for handling and processing 
multi-sender WSD data. 

The first feature ?? of the gateway is the process that prepares 
the receiver for the incoming data. During this stage, all the 
data buffers and basic parameter variables are initialised, the 
data queue is constructed, and the data output filename is 
made according to the current date. The naming of the file 
according to the data enables a new file to be made for each 
instance that data logged. This is done to avoid losing 
complete set of data in the case where a file is corrupted, or if 
the gateway fails to send processed data to the cloud. The 
second feature of the gateway is related to ensuring that data 
is not lost due to the Internet connection issues. When the 
database is storied in the local list, the script moves forward 
by opening the ‘not synced’ data, which might have 
accumulated because of the Internet disconnection during the 
physical activity session (e.g., outdoor physical activity). 
Once the comma-separated values (CSV) file is opened, all the 
data, along with their original timestamps, are loaded in the 
queue (see Figure 6). This process allows the system to 
maintain the timestamp and the sequencing of the data.  

 
Figure. 6. Full details of accumulated data per channel stored in ‘not synced’ 
CSV file in case of lost Internet connectivity.  

The third feature of the gateway is re-establishing Internet 
connectivity. To achieve this, the data stored in the CSV file 
is uploaded first followed by the uploading of the live feed 
of data. This script uses threading and makes two threads for 
multiprocessing. The first thread is for the handling of the 
incoming data from the WSD, all recognition techniques, the 
logging of the data, and the storing of the data in CSV file. 
The second thread is for uploading the available data to the 
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cloud TS, as shown in Figure 6. Once the Internet 
connectivity is confirmed, the basic header of the data is 
constructed in the form of a string, and the main buffer is 
initialized. In the queue, the data are gathered from different 
nodes, and thus, it is necessary that the system can sort the 
data according to different nodes so that the data can be sent 
to their respective channels. Once this sorting is done, and 
the main buffer list is constructed with the data of all nodes, 
uploading is performed. The upload performed here is a bulk 
upload in which the system can upload 900 data frames in a 
single request (see Figure 7). Any two consecutive bulk 
upload requests for the same channel should be separated by 
a time frame of 15 seconds, otherwise, the server will reject 
the data.  

 
Figure. 7. Full details of accumulated data per channel stored in ‘not synced’ 
CSV file in case of lost Internet connectivity.  

The fourth feature that is the multi-node receiver the Python 
script is made for receiving the data from the WSD using the 
NRF24 module. The protocol used to transmit the data is 
‘NRF24_Network’. In this protocol, each WSD is given a 
node ID address, as shown in Figure 8. After receiving the 
data, scripts are checked for any false values. If the data 
received follow the syntax and range of real or acceptable 
data, then they are processed further by the program, 
otherwise, a ‘none acknowledged’ message is sent to the 
WSD for sending the data again.  

 
Figure. 8. Raspberry Pi logfile showing the TX/RX time, node ID, amplitude, 
and frequency.  

C. Cloud ThingSpeak Platform  
Gateway processed data will be sent to the TS using the 

HTTP protocol, along with the amplitude and frequency 
extracted from the WSD. The TS application is used for 
storing, retrieving, and analyzing live data from different 
sensors. It is treated as a platform for aggregating and 
processing the sensor data using MATLAB software for 
further data analysis and visualization. An additional feature 
that the TS can perform is “Thing Tweet”, which includes 
programming the TS channel for limited value. When a value 
exceeds the limit, an automatic Tweet alerts the user or 
healthcare support. All these features, including visualizing 

the real-time incoming data from the gateway, have been used 
in this design to support the mixed mode prehabilitation 
program (see Figure 9). Using the information available inside 
the cloud repository and utilizing the processed data and 
activity information, a presentation is created (see Figure 9). 
The first two plots (a and b) symbolize the compressed 
parameters (i.e., maximum amplitude, corresponding 
frequency), while the third and fourth graphs (c and d) 
represent the accumulated time and gain. 

 

 
Figure. 9. Cloud data visualisation for both WSD data (a and b) and gateway 
processed data (c and d) 

III. ACTIVITY RECOGNITIONS CHALLENGES AND SMART 
MONITORING 

To validate the data collection from the participants 
a special technique has been developed to recognize the 
different physical activities [12]. The technique used for the 
recognizing the common prehabilitation physical activities  
prescribed for participants undergoing major abdominal 
surgery has been described in our previous works [12, 13]. 
Accordingly, three distinct database types were subjected to 
the same techniques for movement outlier detection and 
correction. The first category is the personalized database 
which contains training data taken from the same individual 
while engaging in a number of physical activities typically 
used in prehabilitation programs. Reference identifiers 
extracted from these training data were then used for the 
methods of activity recognition [12]. The second database 
type is based on multiple categories attained from exercise 
performed by participants who could be classified into groups 
(i.e., age, level of fitness). Each group has a common database. 
At this stage the categorization has been based on the span of 
the Fast Fourier Transform (FFT) dominant frequency and 
associated acceleration ranges.  

The third type of database used is a general database 
(non-personalized) that covers all ages and conditions, which 
was developed from physical activity information gathered 
from multiple participants and patients. A common value for 
each physical activity was calculated from the group data and 
compiled in a shared (non-personalized) database and then 
utilized as a point of reference for new users when they begin 
undertaking various physical activities.  

Analysis was performed on four participants of each 
age group who conducted the same physical activities on the 
same pieces of fitness equipment three times in the same 
environment.  

Figure 10 depicts the four participants (P1, P2, P3, 
and P4) conducting treadmill (TM), cycling (C), rowing (RO), 
and cross trainer (CT) at varied intensities (Low (L), Moderate 
(M), and Vigorous (V)) on different days. In the initial session 
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all participants performed the same four activities, and their 
performance data was stored in the system as a reference for 
each participant (personalized database). The precision 
percentages of the activity recognition for the same person 
ranged from 70% in TM to more than 95% in CL and CT 
activities.  

 
Figure. 10. Personalised activity recognition from four participants 
performing the same activity at varying times.  

A categorised database could be created based on age 
group, fitness level, and on any health-related factors could be 
common with a certain group of people. Table 2 shows the 
comparison between activity recognition percentages in 
personalised, categorised  and non-personalised database of 
eight different physical activities. Table 2 shows high 
percentages of activity recognition for the personalised 
database in comparison with the other databases. While the 
non-personalised database recorded lower percentages of 
activity recognition.  

TABLE 2. THE PERCENTAGE OF RECOGNITION OF EACH ACTIVITY FOR 
PERSONALISED, CATEGORISED, AND NON-PERSONALISED DATABASES.  

 

Figure 11 shows the histogram of activity recognition of 
eight prebailition activities using the three different databases.  

 

Figure 11. Activity recognition of eight prehabilition exercises based on 
different types of database. 

IV. MIXED MODE PREHABILITATION PROGRAM SUPPORTED BY 
IOT CPS CASE STUDY  

Three participants completed the mixed mode 
prehabilitation program.  This included one elderly abdominal 
cancer patient waiting for surgery and two middle-aged 
healthy people. The patients conducted three sessions within 
ten days (two sessions in the gym and one outdoor session). 
The total accumulated time was approximately 140 minutes 

with varying intensity levels. The outdoor activity only 
involved walking at varying intensities. Nonetheless, the other 
two participants continued for two weeks, doing six sessions 
(three sessions per week equating to a total of 100-130 
minutes of exercise time). This consisted of three sessions of 
45-60 minutes at the gym (cycling, treadmill, cross trainer, 
and rowing) at varying intensity levels, and three 30 to 45 
minute sessions in outdoor environments walking at varied 
intensities. The portable RPiZW and WSD (Figure 12) were 
given to all three participants, and the RPiZW was joined to a 
local internet connection. Specific TS channels were assigned 
to each participant, preventing data from being mixed up with 
other participants.  

 
Figure. 12. RPiZW, WSD, Strip Band, and USB Charger Cable. 

The preliminary data for the first and second participants 
were available during the first AUT physiotherapist lab 
session test, while the data for the third participant was not 
accessible. Therefore, the personalised database was used for 
the first and second participants, whereas the shared database 
was a reference for the activity recognition for the third 
participant.  Figures 13 a and b show the TS visualisation of 
the three physical activity sessions in detail for the first 
participant. Figures 14 a to d demonstrate more detailed data 
from one session conducted in the gym, illustrating the 
amplitude, frequency, accumulated time, and gain. Figures 14 
e and f display the digital values of accumulated time and gain 
for the various physical activities in the same session.  

 
Figures 13. a. Amplitude and b. frequency for three sessions at different dates 
and time, respectively. 
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Figure 14. a. amplitude, b. frequency, c. accumulated time, and d. 
accumulated gain credit with numeric displays of a single exercise session.  

The above figures demonstrated that the system was able 
to attain data from the different activities, store and analyse 
the offline data in the gateway and pushed the data to the cloud 
once the internet was reconnected again (for example, when 
the participant returned home). The system recognised 82% of 
the actual activities that were performed in the gym, while this 
value was around 68% for outdoor activities (walking in 
varying intensities) due to the overlapping between walking 
and some other activities.  The results were about the same for 
the second participant (83% at the gym and 65% recognition 
for outdoor walking). However, the results of the third 
participant with a shared database varied for different 
activities.  For example, there was 95% recognition for the 
cycling, 78% for rowing and leg press, and less than 65% 
recognition for the cross-trainer, outdoor and treadmill 
walking.  These lower scores were primarility due to the 
overlapping between these activities. Physical efforts were not 
recognised only if the results of the amplitude and frequency 
analysis did not correspond to any database value. Therefore, 
the overlapping among physical activities would reduce the 
system performance from the point of specific activity 
recognition.  This in turn would underestimate the total efforts, 
including accumulated gain and time. 

Figure 15 indicates the mixed mode prehabilitation 
program results for the three participants. The percent of the 
ideal gain for the three participants were 78%, 72%, and 68%, 
respectively. These percent values show that the design and 
application of the IoT remote monitoring system supported a 
mixed mode prehabilitation program. Moreover, the target 
gains also doubled when the personalised database fed the 
system, and the patient performed the prescribed physical 
activities.   

 
Figure 15.  Accumulated gain for the three participants for a two-week 
mixed-mode prehabilitation programme. Note the blue line represents the 
ideal or prescibed credit gain. 

V. CONCLUSION  
The developed IoT system demonstrated the ability to 

support a mixed mode  pre-rehabilitation program. The use of 
wearable technology accompanied by smart gateway allow 
collection of movement data for both supervise and 
unsupervised exercises. The proper utilization of 
computational resources at the wearable sensor, the access 
point age computing and cloud/fog enable the smooth and 
transparent flow of data, information, and events. This in turn 
can motivate the patient and enable the health provider to deal 
with exercise engagement and assess the condition more 
accurately. While this prehabilitation exercise tool has 
developed using a dedicated smart gateway, the use of cell 

phone may be considered as more practical smart access 
device. 

This approach should minimise the prehabilitation barriers 
for people living in a remote areas where limited resources and 
support are available. Furthermore, the findings of the 
prehabilitation exercise intervention show how 
personalisation and non-personalisation logical analysis of 
movement dynamics affect alignment with reality. For seven 
activities, the system was able to recognise more than 70% of 
personalisation data while the percentages were considerably 
less  (55%) for non-personalisation data.  
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