

Prototype implementation of downward transfer
method by tunneling for a large-scale data collection

system using MQTT

Fuya Aoki
Kanazawa Institute of Technology

Japan
c6101709@planet.kanazawa-it.ac.jp

Koichi Ishibashi
Kanazawa Institute of Technology

Japan
k_ishibashi@neptune.kanazawa-it.ac.jp

Tetsuya Yokotani
Kanazawa Institute of Technology

Japan
yokotani@neptune.kanazawa-it.ac.jp

Abstract— Message queuing telemetry transport (MQTT)
has recently attracted attention as an important communication
method in the Internet of Things (IoT). Research and
development have been conducted over time to realize IoT
services using MQTT; however, when the number of connected
IoT devices increase or an IoT system is deployed widely, issues
such as scalability and interoperability exist. We have
previously proposed an efficient communication method for
large-scale data collection systems with multiple MQTT brokers,
such as smart street lighting systems, called the downward
transfer method by tunneling, in which connection management
is by a server and transfer from a server is by tunneling. In other
words, the server manages the information of the broker to
which the sensor is connected, called sensor location
information; then, when the server notifies data to a sensor, it
transfers a message with the sensor location information and
original data to a specific broker, called a top broker, using
tunneling technology. The top broker forwards the received
message to a bottom broker according to the extracted sensor
location information via de-tunneling. Because the top broker
need not to manage a location information for each sensor, the
downward transfer method by tunneling can reduce memory
resources required for the connection management of the top
broker. In addition, it can prevent an increase of traffic due to
memory overflow. In this paper, we implemented a prototype of
this downward transfer method by tunneling and evaluated the
amount of traffic. As a result, we confirmed that the proposed
downward transfer method by tunneling is effective and
available for a large-scale data collection system.

Keywords—IoT, Large-scale data collection, Wireless sensor
network, Connection management

I. INTRODUCTION
Recently, IoT (Internet of Things) devices have spread

rapidly, connecting not only Internet-connected terminals
such as computers and smartphones but also "things" such as
home appliances, automobiles, factory equipment, and
streetlights to the network. They have become indispensable
in our daily lives as well as in various industries. The number
of IoT devices in the world is increasing every year, and is
expected to reach several hundred billion in the next few years
[1]. Under these trends, it is desirable for IoT services to
collect actual data from a wide variety of IoT devices over a
wide area and to notify control data to specific devices as
needed. To realize such an IoT system which IoT devices are
deployed over a wide area, researches and developments are
being conducted considering various aspects, such as the
construction of a wireless sensor network (WSN) to
accommodate IoT devices with communication functions and
an IoT core network consisting of gateways for WSNs
[2][3][4][5]. In addition, ISO/IEC JTC1 /SC41 classifies the
use cases of IoT services and summarizes the requirements for

communication platforms in terms of communication type and
QoS (Quality of Service). It proposes an IoT data exchange
platform for various IoT services to reduce the amount of
communication compared with IoT systems built on
conventional networks. In the field of IoT, a communication
protocol called MQTT (Message Queuing Telemetry
Transport) has attracted attention as an important
communication method. MQTT is an asynchronous and
lightweight communication protocol consisting of publishers
that transmit messages, subscribers that receive messages, and
a broker that acts as a server to mediate messages. The
publisher and subscriber functions operate independently: the
former transmits data to the system, and the latter receives data
from the system (Fig. 1). However, the current MQTT
specification defines an operation using a single broker, which
makes its application to a large-scale system over a wide area
challenging. Therefore, in order to deploy an IoT system with
multiple MQTT brokers, we have previously proposed an
efficient downward transfer method by using tunneling [6]. In
the proposed method, it is possible to easily migrate from
MQTT applications on IoT devices and server by adding some
sub-applications for the downward transfer method. In this
paper, we implemented a prototype of the downward transfer
method by tunneling, and evaluated reduction of traffic on an
IoT core network by the proposed method.

The rest of this paper is organized as follows. In Section II,
we describe the challenges faced by large-scale data collection
systems. Related works are presented in Section III. Section
IV gives an overview of our previously proposed downward
transfer method by tunneling. The prototype implementation
is discussed in Section V, the experiment and evaluation in
Section VI, and finally, the conclusion in Section VII.

Fig. 1. Message queuing telemetry transport.

II. HALLENGES IN LARGE-SCALE DATA COLLECTION

SYSTEM USING MQTT
As an example of a large-scale data collection system, we

focus on smart street lighting systems. Recent advances in
smart street lights equipped with a means of communication
with controllable LEDs have led to the development of remote
control systems in which street lights are managed and
maintained by a central server [7]. Smart street lighting
systems have become an important research field because they

Subscribe
Publisher

BrokerSubscriber

Publisher

Publish

Publish

439978-1-6654-9927-9/22/$31.00 ©2022 IEEE APCC 2022

are expected to provide efficient maintenance of street lights
as well as additional or novel services. For example, by
visualizing the status and keep-alive status of street lights on
a central server, it is possible to reduce energy consumption
through optimal dimming control that takes into account the
effects of buildings, trees, and weather. It is also possible to
improve the efficiency of equipment maintenance and reduce
maintenance costs such as labor costs. Additional services
such as visual navigation are also being considered to control
the flow of people smoothly by remotely controlling the
lighting color and frequency of street lights. Another
candidate for a new service is the visualization of sensor
information through environmental monitoring (Fig. 2).

In a smart street lighting system, small data such as sensor
information are exchanged between the smart street lights and
a central server, but conventional communication has a large
data transfer overhead. It is therefore effective to apply MQTT,
which is a communication protocol for IoT with a small
overhead and lightweight. However, the smart street lighting
system consists of several hundred thousand sensors.
Therefore, scalability of the broker becomes an issue in
systems that utilize MQTT because the current MQTT
specification defines an operation using a single broker. In
other words, when data collection by the single server is
considered, there are resource congestion and overflow issues
at the single broker to which the server connects due to the
concentration of messages from sensors and from the server
on the single broker. Then it is expected for an IoT system
with multiple brokers. However, on the IoT system with
multiple brokers, issue of memory overflow on the broker to
which the server connects to remains because the broker needs
to maintain location information of sensors for support of
downward transfer from the server to sensors.

Fig. 2. Smart street lighting system.

III.

Regarding the realization of IoT systems using MQTT to
deploy large-scale systems, research is being conducted to
evaluate the performance and to propose methods of
cooperation with multiple brokers. For example, [8][9]
evaluate the performance of various MQTT implementations
against brokers. According to the benchmark in [8], the
number of terminals that can be processed by a single broker
is less than 100,000. The smart street light system, which is
the target of this research, is a large-scale data collection
system, and there are still some issues to be solved before it
can be realized with a single broker. MQTT systems with
multiple brokers have been investigated in many studies
[10][11][12]. In [10], MQTT with a spanning tree of brokers
on the network (MQTT-ST) is proposed for building a

distributed network with multiple MQTT brokers. MQTT-ST
enables the data collection from a wide area. However,
MQTT-ST has issues such as traffic overhead due to the need
for periodic information exchange with the broker.

In [11], a scalable and low-cost MQTT broker clustering
system is proposed to handle a large number of IoT devices.
In this clustering system, MQTT clients and multiple MQTT
brokers are connected by a load balancer to distribute network
traffic to the MQTT brokers. Therefore, compared to a single
broker, the load on each broker is reduced and the throughput
of the entire clustering system is increased, thereby reducing
the CPU utilization of each broker.

In [12], MQTT brokers are placed at each network edge to
handle data with the characteristic of “edge heavy,” where
objects at the network edge of an IoT system generate a large
amount of data. To coordinate these multiple MQTT brokers,
they propose a new mechanism called the ILDM
(Interworking Layer of Distributed MQTT brokers). An
ILDM node placed between a broker and a client not only
relays MQTT clients and brokers as a proxy but also connects
to other ILDM nodes to coordinate multiple brokers. As
shown in [11][12], the deployment of systems with multiple
brokers is considered in many places for building large-scale
systems. However, there is still the issue that the traffic of the
entire system will increase.

Research has been conducted in many places to realize a
large-scale IoT system using MQTT. However, according to
the performance evaluation of a single broker, it is impossible
to realize a large-scale data collection system with a single
broker. In addition, through research of the coordination of
multiple brokers, when we consider communication from the
server to the sensor for data notification, the broker becomes
overloaded owing to the subscription from many sensors.
Increasing the traffic of an entire system consisting of multiple
brokers also remains an issue.

Therefore, we have previously proposed an efficient
downward communication method for a large-scale data
collection system with multiple MQTT brokers [6], called the
downward transfer method by tunneling. It has two features:
connection management by the server and downward message
transfer by tunneling. Connection management by the server
reduces the amount of memory used by the brokers connected
to the server. In addition, downward transfer by tunneling
allows multiple brokers to coordinate. In this paper, we
implemented a prototype of the downward transfer method by
tunneling and evaluated it experimentally.

IV. DOWNWARD TRANSFER METHOD BY TUNNELING

A. General Behavior of Tunneling Method
We have previously proposed an efficient communication

method for large-scale data collection systems with multiple
MQTT brokers, such as smart street lighting systems, called
the downward transfer method by tunneling [6]. The system
consists of multiple bottom brokers that accommodate IoT
devices as sensors at each point, a top broker that
accommodates the bottom brokers at each point, and a server
(Fig. 3). The targeted system collects data from sensors and
notifies control data from the server to the sensors by
publish/subscribe using MQTT. The downward transfer
method by tunneling has two features: connection
management by the server, and message transfer by tunneling
(Fig. 3). In other words, the server manages the information of

Publish(temperature, humidity, and illumination,etc…)

Publish(Control message)

Server

Broker

Sensors

Broker

Broker

440

the bottom brokers to which the sensors connects, called the
sensor location information. When the server notifies data to
the sensor, it transmits a tunneled message to the top broker.
The tunneled message includes the data notified to the sensor,
the sensor location information, and the original topic. The top
broker forwards the data notified to the sensor by de-tunneling
the received message.

Fig. 3. Structure of the downward transfer method by tunneling.

B. Connection Management by the Server
Communication from the server to the sensors are via the

top broker. Therefore, if the top broker manages the routes or
connections to each sensor, amount of memory used by the
top broker becomes a major issue. Therefore, the server
manages the bottom broker to which each sensor connects, to
reduce the amount of memory used by the top broker for
connection management. For example, as shown when
sensor#1 connects to broker#1, the sensor location
information for sensor#1 is “Broker1.” In other words,
“Broker1” is notified to the server as the sensor location
information for sensor#1. Similarly, the sensor location
information of sensor#4 connected to broker#2 is “Broker2.”
According to the notification of information from the sensor,
the server maintains a table that shows the relationship
between the sensor and the bottom broker to which the sensor
connects.

C. Downward Transfer
The downward transfer of notification data from the server

to the sensor via tunneling is described in this sub-clause. To
receive messages from the server, each sensor subscribes to a
bottom broker with a topic that indicates its own information.
When the server notifies data to a sensor, the sensor location
information for the sensor and the notification data are
tunneled in a MQTT packet. The server then publishes the
tunneled data to the top broker.

As an example shown in Fig. 3, when the server notifies
data to sensor#1, that is, “data,” the server publishes a message
with tunneling topic “TunnelingTopic,” which contains the
sensor location information “Broker1,” the notified data and
original topic. The topic “TunnelingTopic” is used by the top
broker to receive messages for tunneling from the server.
When the top broker receives a message with the topic
“TunnelingTopic” for tunneling, it de-tunnels the original
topic, and transfers the message to the bottom broker
according to the extracted topic.

D. Upward Transfer
The upward transfer system used for registration of sensor

location information is described in this sub-clause. First, the
server subscribes to the top broker with the topic
“UpwardTopic.” The topic “UpwardTopic” is used for
transferring sensor location information from the sensor to the
server. When the top broker connects to each bottom broker,
it subscribes with the topic “UpwardTopic.” When the sensor
notifies to the server, it publishes the sensor location
information by the topic “UpwardTopic” to the bottom broker
to which it connects. The bottom broker receives this message
and publishes it to the top broker to which it has subscribed.
The top broker receives the published message from the
bottom broker and publishes it to the server with the topic
“UpwardTopic” and the payload (sensor location information)
contained in the published message.

V.

A. Software Architecture
To implement the downward transfer method by tunneling,

we used Raspberry Pi 4 Model B 4 GB, Python as the
programming language, paho-mqtt as the library, and
mosquitto [13] as the broker function. The software
architecture is shown in Fig. 4. The server consists of a
connection management, a location management, a MQTT
subscriber, a MQTT publisher, and a tunneling process. The
location management and the tunneling process are specified
for the proposed method. The tunneling process is used for
transmitting a publish message for downward transfer. The
top broker consists of a local broker, a local connection
management, a MQTT subscriber, a de-tunneling process, a
connection management, and a tx_function. The local broker
is a broker that operates within the top broker. The de-
tunneling process and the tx_function are specified for the
proposed method. The tx_function is used for forwarding a
publish message obtained as a result of de-tunneling a
message which the top broker receives from the server. The
sensor consists of the registration process, a connection
management, a MQTT subscriber, and a MQTT publisher.
The registration process is responsible for registration of the
sensor location. The connection management, the MQTT
subscriber, and the MQTT publisher are functions for
conventional MQTT applications. The location management
and the tunneling process in the server, the de-tunneling
process and the tx_function in the top broker, and the
registration process in the sensor are newly implemented
functions. Therefore, it is possible to easily migrate from
MQTT applications on IoT devices and servers by adding
some sub-applications for the downward transfer method.

Bottom
broker

#1

Sensor
#1

Sensor
#2

ServerTop
broker

Bottom
broker

#2

Sensor No. Location information
Sensor #1 Broker1
Sensor #2 Broker1
Sensor #3 Broker2
Sensor #4 Broker2

Table

Publish

Publish

Tunneling

De-tunneling

Topic
UpwardTopic

Data
data

Topic
UpwardTopic

Data
data

Topic
UpwardTopic

Data
data

Broker1
Topic

Sensor1
Data
data

Location
Topic

TunnelingTopic

Data

Topic
Sensor1

Data
data

Topic
Sensor1

Data
data

Sensor
#3

Sensor
#4

441

Fig. 4. Software architecture.

B. Location Management
The location management on the server manages sensor

location information including a sensor number and a broker
identifier to which the sensor connects to. The location
management receives sensor location information from the
sensor and maintains the location management table.

C. Tunneling Process
The tunneling process on the server places a tunneling

header in the payload of the message to be transmitted and
tunnels the message. A packet in the downward transfer
method by tunneling consists of a TCP/IP header, a MQTT
header, and a payload (Fig. 5). The MQTT header of the
packet contains information such as control type, flags, and
topics. The payload part of the packet is divided into the
tunneling header, original topic, and data to be notified. The
tunneling header contains the location information of the
sensor. For example, when transmitting data to sensor#1,
which is connected to broker#1, the sensor location
information is “Broker1,” and the original topic is “Sensor1.”

Fig. 5. Packet format.

D. De-tunneling Process
The de-tunneling process on the top broker extracts sensor

location information, the original topic, and notification data
from the payload part by de-tunneling the received publish
message. Then, it transmits the original topic and notification
data to tx_function corresponding to the destination bottom
broker based on the sensor location information through
inter-process communication. tx_function transfers the
notification data to the bottom broker with the original topic.

E. Registration Process
The registration process on the sensor is a process in

which the sensor publishes its own location information to the
server via the bottom broker and top broker in order to
register it with the server.

F. Prototype Behavior
The behavior sequence of the prototype is shown in Fig. 6.

For notifying a message from the server to the sensor, the
behavior sequence of the prototype is described in this sub-
clause. As pre-sequence, the top broker connects to each

bottom broker by the connection management. MQTT
subscriber on the top broker subscribes to each bottom broker
with “UpwardTopic” and subscribes to the local broker with
“TunnelingTopic.”

The sensor firstly registers sensor location information
with the server. Therefore, it publishes its location information
to the connected bottom broker with “UpwardTopic” by the
registration process. At the same time, to receive notifications
from the server, the sensor subscribes to a topic that identifies
notification data to the bottom broker. The top broker receives
a message containing the sensor location information, from
the sensor via the bottom broker and transfers it to the server.
When the server receives this message, it manages the sensor
location information by the location management.

Subsequently, the server tunnels the message to the top
broker by means of a tunneling process in order to notify the
sensor. In this message, the topic is “TunnelingTopic,” and the
payload contains the tunneling header, original topic, and
notification data. In the top broker, messages from the server
are received via the local broker. The de-tunneling process
extracts the tunneling header, original topic and notification
data from the payload of the published message and de-
tunnels it. And it publishes using the tx_function
corresponding to each bottom broker. The bottom broker then
publishes to the sensor.

Fig. 6. Prototype behavior sequence.

VI.

A. Experimental Overview
To verify the behavior of the downward transfer method

by tunneling, we monitored the traffic data in an experimental
environment (Fig. 7) using a Raspberry Pi and compared them
with the estimated traffic volume. The experimental
environment consisted of eight Raspberry Pi model B 4GB
units, which play as one server, one top broker, two bottom
brokers, and four sensors. The top broker and bottom brokers
are connected by LAN cables via switching hubs. There is a
wireless connection between the top broker and server and
between the bottom broker and sensor.

In addition, we compared the traffic of the prototype IoT
core network of the proposed method with the traffic of the

Registration proc.

Connection mng.

MQTT Subscriber

MQTT Publisher

Local broker

Lo
ca

l c
on

ne
ct

io
n

m
ng

.

M
Q

TT
 S

ub
sc

rib
er

D
e-

tu
nn

el
in

g
pr

oc
.

Tx_function

Connection mng.

MQTT Publisher

Location mng.

Tunneling
proc.

Tx_functionTx_function

Top broker

Server
Sensor Bottom

broker

MQTT Subscriber

MQTT Subscriber
Connection mng.

MQTT SubscriberMQTT Subscriber

Connection mng.Connection mng.

Tunneling header

TCP/IP

Original topic

MQTT header Payload

Notification data

Server
Top broker
De-tunneling

processTx_function
Bottom
Broker

connect
connect ackconnect

connect ack

Local
broker

subscribe(TunnelingTopic)
subscribe ack connect

connect ack
subscribe ack

Sensor

connect
connect ack

subscribe ack

subscribe(UpwardTopic)
subscribe ack

publish(UpwardTopic)

publish(TunnelingTopic)

Registering a
destination

subscribe(UpwardTopic)

Destination
identification

publish(Sensor1)

subscribe(Sensor1)

() ・・・ Topic

IoT core network

442

IoT core network of a system with a single broker. As an IoT
core network in a large-scale data collection system, the
downward transfer method by tunneling is defined as the
range consisting of a top broker and bottom broker, or in the
case of a single broker, the range consisting of a broker and an
access point.

For the experiment and evaluation, we assumed a large-
scale data collection system, such as a smart street lighting
system, as a use case. The number of sensors (topics) was
increased to 4, 8, 16, 32, 64, and 128, for each iteration of the
experiment. Multiple sensors are simulated with a single
sensor device, Raspberry Pi. Because this was a large-scale
data collection system, the frequency of notifications from the
sensor to the server was assumed to be high; therefore, one
publication per client was performed every 30 seconds. The
frequency of notifications from the server to the sensor was
assumed to be low; therefore, one publication was performed
every 60 seconds for all clients. The keep-alive value was set
to 15 seconds. The average number of messages generated
under the above conditions was calculated every 30 seconds.
The frequency of data notification from the server to the
sensor is expected to be smaller in the actual system than the
frequency used for this verification. In this verification, the
frequency of data notification from the server to the sensor
was increased to confirm behavior and compare traffic
volumes.

Fig. 7. Experimental environment.

B. Verification of Prototype Behavior

A prototype of the downward transfer method by
tunneling was verified using a simplified analytical model to
see if it would behave as per the assumed sequence. The
sequence is Fig. 6. Equation (1) shows the traffic (T1) caused
by MQTT messages in the IoT core network on the IoT system
by the prototype based on a simple analytical model. Here, n
is the number of sensors. p is the number of published
messages from the sensor to the server. In other words, the
number of types of data to be notified to the server (equivalent
to the number of topics in MQTT). t is the frequency of data
notification from the server to the sensor, compared to the
frequency of messages from the sensor to the server. In
addition, ping is the keep alive frequency for maintaining
MQTT connections between the top broker and bottom broker.
broker is the number of bottom brokers connected to the top

broker. In the experimental environment, we monitored the
number of MQTT packets in an IoT core network. Fig. 8
compares the traffic of the downward transfer method by
tunneling based on a simple model with the data obtained in
an experimental environment in terms of the number of
messages. The set value at T1 is p = 1, t = 0.5, ping = 2, and
broker = 2. It can be confirmed that there is no difference
between the estimated traffic volume and the traffic volume
obtained in the experimental environment. Therefore, we
confirmed that the prototype functioned as expected.

Fig. 8. Comparison of measurement results and simple model.

Fig. 9. Single broker evaluation sequence.

C. Comparison with Single Broker

The traffic of the implemented proposed method prototype
was compared with the traffic of an IoT system with a single
broker as an existing method. For evaluating the traffic of the
IoT system with a single broker, we assumed that publishing
messages with unknown topics were broadcast when memory
overflow occurred in the broker owing to the increase in topics
subscribed by the connected sensors. Fig. 9 shows the
sequence of an IoT system with a single broker.

From Fig. 9, in IoT system with a single broker, when the
number of sensors exceeds the maximum number of sensors
that a single broker can handle, the traffic volume increases
sharply due to memory overflow. However, in an IoT system
with multiple brokers by the proposed method, the traffic

ServerTop broker

Bottom brokers

Sensors

Switching hub

T1 = n × (p + (p × t)) + ping × broker (1)

0

50

100

150

200

250

0 20 40 60 80 100 120 140

N
um

be
r o

f m
es

sa
ge

s
vi

a
M

Q
TT

Number of sensors

Experimental environment Calculation with a simple model

IoT core network

publish(Sensor2)

AP
#1 Broker ServerSensor

#1
AP
#2

Sensor
#2

subscribe(Sensor1)

subscribe(Sensor2)

publish(Sensor1)

publish(Sensor2)

ping

ping

subscribe(Sensor1)

subscribe(Sensor2)

Memory
overflow

() … Topic

publish(Sensor1)
publish(Sensor1)

publish(Sensor2)

publish(Sensor2)
publish(Sensor2)

443

volume is expected to increase linearly in proportion to the
number of sensors, so the proposed method is effective. In the
proposed method, the server manages the location information
of the sensor. As a result, it is assumed that the memory
resources consumed by the top brokers are reduced.

VII.

In this paper, we present a prototype implementation of the
downward transfer method by tunneling, which is an efficient
communication method that we have previously proposed for
a large-scale data collection system with multiple MQTT
brokers, such as smart street lighting systems. The proposed
method consists of connection management by the server and
upward and downward transfers by the top broker through
tunneling. In other words, the server manages the bottom
broker information to which the sensor is connected. When
the server notifies data to the sensor, the top broker transfers a
message containing the data to the sensor and the sensor
information managed by the server, to the bottom broker using
tunneling technology.

We implemented a prototype of our proposed method. Its
implementation takes into account easy migration from
conventional MQTT applications on IoT devices and server
by adding some sub-applications for the downward transfer
method. To verify the behavior of the downward transfer
method by tunneling, we monitored the traffic data in an
experimental environment using a Raspberry Pi and compared
it with the estimated traffic volume. It was observed that there
was no difference between the estimated traffic volume and
the traffic volume obtained in the experimental environment.
Therefore, we confirmed that the prototype functioned as
expected. In addition, the traffic of the prototype was
compared with the traffic of an IoT system with a single
broker as a control. In an IoT system with a single broker, the
traffic volume increases rapidly due to congestion on the
single broker if memory overflow on the single broker occurs
due to an excessive increase of the number of sensors.
However, in the IoT system using the proposed downward
transfer method by tunneling, the amount of traffic increased
linearly with the number of sensors even if the number of
sensors increased excessively. Therefore, we confirm that the
memory resources consumed on the top broker could be
reduced by management of the sensor location management
on the server in the proposed method. And by prototyping the
proposed method, the downward transfer method by tunneling
can be used in large-scale data collection systems. In the future,
we will continue to verify the proposed method in a form
closer to actual deployment, including its application to real-
world environments.

ACKNOWLEDGMENT
Part of this work has been supported by the “Strategic

International Standardization Promotion Project” of the
Ministry of Economy, Trade, and Industry in Japan. The
authors would like to heartily thank the members concerned.

REFERENCES
[1] Jie Ding, Mahyar Nemati, Chathurika Ranaweera, and Jinho Choi,

“IoT Connectivity Technologies and Applications: A Survey,” IEEE
Access (Volume: 8) Apr. 2020.

[2] Luís M. Borges, Fernando J. Velez, and António S. Lebres, “Survey on
the Characterization and Classification of Wireless Sensor Network
Applications,” IEEE Communications Surveys and Tutorials, Vol. 16,
No. 4, pp. 1860-1890, Apr. 2014.

[3] Koichi Ishibashi, and Katsunori Yamaoka, “A Study of Network
Stability on Wireless Sensor Networks,” 2015 9th International
Conference on Next Generation Mobile Applications, Services and
Technologies, Sep. 2015.

[4] Tetsuya Yokotani, and Yuya Sasaki, “Comparison with HTTP and
MQTT on Required Network Resources for IoT,” 2016 International
Conference on Control, Electronics, Renewable Energy and
Communications (ICCEREC) Sep. 2016.

[5] Yuya Sasaki, Tetsuya Yokotani, and Hiroaki Mukai, “MQTT over
VLAN for Reduction of Overhead on Information Discovery,” 2019
International Conference on Information Networking (ICOIN), May.
2019.

[6] Fuya Aoki, Koichi Ishibashi, Tetsuya Yokotani, “Proposal of an
efficient downward communication method for a large-scale data
collection system using MQTT,” 15th International Workshop on
Informatics (IWIN2021) Sep. 2021.

[7] Koichi Ishibashi, Fuga Nakai, and Tetsuya Yokotani, “A Study of Data
Collection Method by Using a Wildcard on a Large-Scale Smart Street
Lighting System,” The 24th World Multi-Conference on Systemics,
Cybernetics and Informatics (WMSCI 2020), Sep. 2020.

[8] SCALAGENT “Benchmark of MQTT servers ActiveMQ 5.10.0
Apollo 1.7 JoramMQ 1.1.3 (based on Joram 5.9.1) Mosquitto 1.3.5
RabbitMQ 3.4.2,” Jan. 2015.

[9] Biswajeeban Mishra, “Performance Evaluation of MQTT Broker
Servers,” International Conference on Computational Science and Its
Applications (ICCSA2018), pp. 599-609, Jul. 2018.

[10] Edoardo Longo, Alessandro E.C. Redondi, Matteo Cesana, Andres
Arcia-Moret, and Pietro Manzoni, “MQTT-ST: a Spanning Tree
Protocol for Distributed MQTT Brokers,” 2020 IEEE International
Conference on Communications (ICC), Jul. 2020.

[11] Pongnapat Jutadhamakorn, Tinnapat Pillavas, Vasaka Visoottiviseth,
Ryousei Takano, Jason Haga, and Dylan Kobayashi, “A Scalable and
Low-Cost MQTT Broker Clustering System,” 2017 2nd International
Conference on Information Technology (INCIT), Jan. 2018.

[12] Ryohei Banno, Jingyu Sun, Susumu Takeuchi, and Kazuyuki Shudo,
“Interworking Layer of Distributed MQTT Brokers,” IEICE
Transactions on Information and Systems, Vol. E102-D, No. 12, pp.
2281-2294, Dec. 2019.

[13] Eclipse Foundation, “Eclipse Mosquitto™ An Open Source MQTT
Broker,” https://mosquitto.org/, May. 2022.

444

