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Abstract—With the development of Internet of Things (IoT),
wireless rechargeable sensor networks (WRSNs) have been widely
applied in modern society. There has a greater demand for green
and efficient remote wireless charging to power the wireless
sensor nodes (SNs) in WRSNs. However, few has tackled the
wireless charging efficiency problem that can achieve the low
dead SNs percentage (DSP) in far-field wireless charging. Existing
far-field wireless charging schemes cannot meet the energy supply
requirement of large-scale SNs. Therefore, this work proposes the
multiple mobile chargers (MCs)-assisted efficient green energy
wireless charging for WRSNs. Firstly, according to the existing
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) algorithm, the area not covered by the wireless
charging base stations (BSs) is divided into multiple irregular-
shape sub-regions. Then, we leverage multiple MCs to wirelessly
charge the SNs located in these sub-regions. Finally, we propose
the Minimal chArging grouPings (MAP) algorithm to minimize
the number of the MCs’ anchor points (APs) and efficiently
charge the SNs. The simulation results validate that our proposed
algorithm can effectively improve the wireless charging energy
efficiency and reduce the DSP.

I. INTRODUCTION

With the rapid development of Internet of Things (IoT),
wireless rechargeable sensor networks (WRSNs) have been
widely deployed in modern agriculture, smart factory and
intelligent transportation [1], [2]. WRSNs highly bestrew
convenience and efficiency into our daily lives. However, the
battery capacity of a sensor node (SN) is usually limited; the
SNs’ limited energy is the main factor affecting the long-term
normal function of WRSN.

In order to prolong the WRSN’s lifetime, a number of
methods have been proposed to alleviate the SNs’ energy
issue. The first method is periodical battery replacement [3].
However, for a large-scale WRSN, replacing batteries not only
leads to vast operational cost but also wastes time. The second
method is to conserve the energy of a SN by minimizing
its energy consumption [4]. Plenty of network management
strategies [5], data fusion protocols [6], and sleep-scheduling
mechanisms [7] have been proposed to reach this aim. By the
second method, although the lifetime of a SN can be prolonged
to a certain extent, this does not fundamentally resolve the
energy sustainability issue. The third method is to equip the
wireless SNs with ambient energy harvesting capabilities [8],
i.e., the SNs are able to collect surrounding solar, wind, or
thermal energy to power themselves. However, this method is

greatly affected by the local physical environment; the ambient
energy is unstable and unpredictable.

At present, far-field wireless charging is an essential and
promising technique to intentionally power the remote SNs [9],
[10]. Far-field wireless charging leverages the electromagnetic
waves to transmit wireless energy to the SNs [11]. Electro-
magnetic beams can be more efficient (concentrated) when
the wireless energy emitter (wireless charging base station
(BS) or mobile charger (MC)) is equipped with multiple
antennas. This technique can also adjust the width of the
energy beamlet according to the particular charging scenario
so that the wireless energy transmission loss can be reduced
and the charging distance can be extended. Therefore, it is
beneficial for the large-scale WRSN.

In WRSN, in order to further decrease the energy loss and
reduce the number of exhausted SNs (i.e., becoming dead
SNs), many existing works have studied the wireless charging
schemes. An MC was leveraged by Xie et al. [12] to more effi-
ciently charge SNs by moving close to them. According to the
preplanned moving path, the energy consumption of the MC is
minimized. A minimal charging time strategy for WRSN was
proposed by Fu et al. [13]; they designed a moving scheme
for the MC to fully charge all the SNs in the network within
a short time. Wang et al. [14] studied the optimal charging
radius for wireless power transmission (WPT). The optimal
charging radius is determined to maximize the received energy.
Lin et al. [15] investigated the minimal charging delay scheme
to improve the charging efficiency. The linear programming
approach was adopted to solve the multiple chargers’ minimal
charging delay problem.

Most studies only adopt the omnidirectional wireless charg-
ing (i.e., they did not consider the directional charging beams),
thus resulting in a low charging efficiency and a high dead
SNs percentage (DSP). In addition, most of the existing MC
charging schemes adopt periodic charging and they do not con-
sider the dynamics of SNs’ energy consumptions; some SNs
may run out of energy soon by implementing their proposed
schemes. In order to efficiently charge the SNs and maintain
most of the SNs alive, we first adopt the Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm
[16] to classify the SNs. By equipping multiple antennas at
the MCs, we then propose the Minimal chArging grouPings
(MAP) algorithm to reduce the number of anchor points (APs),
i.e., stops of the MCs to save the energy consumed in the
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MCs’ moving paths and reduce the total charging time in
the network. In the MAP algorithm, more SNs can receive
enough energy replenishment in time. It improves the WRSN’s
wireless charging energy efficiency and reduces the DSP.

II. SYSTEM MODEL

Consider the green energy wireless charging framework
with a charging area with multiple wireless charging BSs as
shown in Fig. 1. A wireless charging BS first harvests green
energy through their solar panels and wind turbines [17]–[19]
and then transmits the harvested green energy in the form of
three energy beams (i.e., a beam covers 120◦) to charge its
covered SNs and MCs [20]. A wireless charging BS covers a
circular zone with radius Rbs.

Fig. 1. Green energy wireless charging framework for WRSNs.

According to the DBSCAN algorithm, the area not covered
by the wireless charging BSs is divided into three irregular-
shape sub-regions. These irregular-shape sub-regions can be
denoted by Qµ, µ = 1, 2, 3. The DBSCAN algorithm is
a cluster-based algorithm, which considers the number and
density of SNs in the WRSN. By adopting this algorithm,
the SNs in a sub-region, which has a high SNs density, first
form a cluster. In the meantime, after all the clusters (sub-
regions) are formed, the numbers of SNs in all sub-regions
are almost the same. An MC is responsible to charge the SNs
in a sub-region. Each MC principally charges the hungry SNs
(i.e., the SNs that request energy replenishment). At the same
time, the non-hungry SNs (i.e., the SNs that do not request
energy replenishment) located in the MC’s energy beam can
also receive wireless energy. Hence, the non-hungry SNs can
also be charged by the way when the MC charges the hungry
SNs (without inducing extra energy consumption to the MC).
An MC is installed with multiple directional antennas to form
six directional beams (i.e., a beam covers 60◦) to cover its
surrounding 360◦ circular zone, and an MC’s coverage radius
is Rmc. The specific wireless charging framework with sub-
regions division is shown in Fig. 2.

Assuming there are Ψµ SNs in the µth sub-region. We de-
note an AP selection matrix Ω with three rows and max (Ψµ)
columns. We adopt Ω (µ, ψ) to represent the AP selection
decision variable. Ω (µ, ψ) = 1 represents that the µth row
and the ψth column in the Ω is selected as AP. Ω (µ, ψ) = 0
represents that the µth row and the ψth column in the Ω is

Fig. 2. Specific wireless charging framework with sub-regional division.

not selected as AP, where ψ = 1, 2, · · ·,max (Ψµ). Assuming
there are Kµ APs in the µth sub-region, represented by the
charging sequence set Sµ =

{
s(µ,1), s(µ,2), · · ·, s(µ,Kµ)

}
;

s(µ,k) indexes the kth AP in the µth sub-region. The charging
sequences in the three sub-regions can be represented by the
matrix S = {S1,S2,S3}. When the MC charges the SNs
at the kth AP, there are Ik hungry SNs and Jk non-hungry
SNs covered by this MC. Ik hungry SNs can be represented
by set Hk=

{
h(k,1), h(k,2), · · ·, h(k,Ik)

}
; h(k,i) represents the

ith hungry SN within the MC’s coverage zone when the MC
charges the SNs at the kth AP. Jk non-hungry SNs can be
represented by set Nk=

{
n(k,1), n(k,2), · · ·, n(k,Jk)

}
; n(k,j)

represents the jth non-hungry SN within the MC’s coverage
zone when the MC charges the SNs at the kth AP.

In this system model, assuming all SNs’ batteries are
furnished with the same capacity ε. If the amount of residual
energy of a SN is less than the alarm energy threshold γ,
this SN is called the hunger SN. It sends energy request
message, Ah(k,i)

=
{(

xh(k,i)
, yh(k,i)

)
, αh(k,i)

, d(h(k,i),mc)

}
,

to its associated BS (i.e., the BS provides the SN with the best
power gain, according to Strongest Signal First [21]). Then,
this BS will assign the MC (responsible for this sub-region)
to charge this hungry SN. Here,

(
xh(k,i)

, yh(k,i)

)
and αh(k,i)

respectively represent the position and residual energy of the
ith hungry SN within this MC’s coverage zone when the MC
charges the SNs at the kth AP. When αh(k,i)

≤ 0, it means that
the ith hungry SN is dead. d(h(k,i),mc) is the distance between
the ith hungry SN and the MC.

A. Charging Priority Model

When the MC charges the SNs at the kth AP, the ith hungry
SN’s energy consumption rate within the MC’s coverage zone
is ch(k,i)

. The ith hungry SN’s residual lifetime is βh(k,i)
,

which can be obtained as

βh(k,i)
=

αh(k,i)

ch(k,i)

. (1)
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In order to determine a SN’s charging priority in the µth sub-
region, we first define the ith hungry SN’s residual lifetime
priority function as

χµ
h(k,i)

=

Kµ∑
k=1

Ik∑
i=1

βh(k,i)

βh(k,i)

. (2)

Here,
Kµ∑
k=1

Ik∑
i=1

βh(k,i)
represents the summation of the residual

lifetimes of all covered hungry SNs in the µth sub-region.
Then, we define the ith hungry SN’s distance priority function
as

∂µ
h(k,i)

=

Kµ∑
k=1

Ik∑
i=1

d(h(k,i),mc)

d(h(k,i),mc)
. (3)

Here,
Kµ∑
k=1

Ik∑
i=1

d(h(k,i),mc) represents the summation of dis-

tances between all covered hungry SNs and the MC in the µth
sub-region. According to Eq. (2) and Eq. (3), the ith hungry
SN’s charging priority function is defined as

Oµ
h (k,i)

= χµ
h(k,i)

+ ∂µ
h(k,i)

. (4)

A hungry SN with a larger value of the priority function
Oµ

h (k,i)
has a higher the charging priority. The zone’s charging

sequence is determined by the highest charging priority of the
hungry SNs within the zone.

B. Charging Model

When electromagnetic wave propagates in space, the power
attenuates with the increase of transmission distance. Accord-
ing to Friis transmission equation [22], the ith hungry SN’s
received power can be expressed as

Prh(k,i)
= Ptmc

GtGrh(k,i)
η

Lp

(
λ

4πd(h(k,i),mc)

)2

. (5)

Here, Ptmc represents the wireless charging power of the
MC. Gt represents the transmission antenna gain. Grh(k,i)

represents the reception antenna gain of the ith hungry SN.
η is the diode rectification efficiency. Lp is polarization loss
of the reception antenna (supposing all SNs in this network
are identical, and so η and Lp are the same for all the SNs).
λ is the wavelength of the electromagnetic wave for wireless
charging. d(h(k,i),mc) represents the distance between the ith
hungry SN and the MC. When the distance between the SN
and the MC exceeds the maximal charging radius Rmc of MC,
the received power of the SN can be neglected.

C. Charging Time Model

In each round of charging scheduling, MC mainly charges
the hungry SNs. At the same time, the non-hungry SNs
covered by the MC’s energy beam can also receive wireless
energy. Therefore, the MC’s charging time is determined by

the charging demand time of the hungry SNs. The ith hungry
SN’s charging time is defined as

th(k,i)
=

ε− αh(k,i)

Prh(k,i)

. (6)

Here, ε− αh(k,i)
represents the ith hungry SN’s demand

energy. The MC only needs to fully charge all the hungry
SNs in the coverage zone. Therefore, the charging time of the
MC at the kth AP is defined as

t
(
s(µ,k)

)
= max

h(k,i)∈Hk

(
th(k,i)

)
. (7)

The charging time of the MC at all APs in the µth sub-
region is denoted by set Tµ. The charging time periods in
the three sub-regions can be represented by the matrix T =
{T1,T2,T3}.

D. SNs’ Received Energy Model

After the MC charges the SNs covered by the kth AP, the
batteries of all hungry SNs within this MC’s coverage zone
are fully charged. Therefore, the energy obtained by the ith
hungry SN is defined as

Eh(k,i)
= ε− αh(k,i)

. (8)

The amount of energy received by a non-hungry SN is
related to the charging time of the MC in this charging zone.
Therefore, the maximal energy received by the jth non-hungry
SN from the MC is

E′
n(k,j)

= Prn(k,j)
t
(
s(µ,k)

)
, (9)

where Prn(k,j)
represents the jth non-hungry SN’s received

power. As a SN’s battery capacity is limited, the total energy
obtained by the jth non-hungry SN is defined as

En(k,j)
= min

(
E′

n(k,j)
,
(
ε− αn(k,j)

))
. (10)

Here, ε− αn(k,j)
represents the jth non-hungry SN’s demand

energy.
After the MC charges the SN covered by the kth AP, the

energy received by all SNs within this coverage zone can be
defined as

E
(
s(µ,k)

)
=

Ik∑
i=1

Eh(k,i)
+

Jk∑
j=1

En(k,j)
. (11)

Here,
Ik∑
i=1

Eh(k,i)
is the total amount of energy received by all

hungry SNs after the MC charges the SNs covered by the kth

AP.
Jk∑
j=1

En(k,j)
is the total amount of energy received by all

non-hungry SNs after the MC charges the SNs covered by the
kth AP. Therefore, the total energy received by all SNs in the
µth sub-region is defined as

Erµ =

Kµ∑
k=1

(
E
(
s(µ,k)

))
. (12)
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E. MC’s Energy Consumption Model

The total energy carried by an MC is Emc. The energy
consumed by the MC to move one meter is em. The MC’s
moving distance for fully charging all the hungry SNs in the
µth sub-region is represented as

Lmµ = dbs,s(µ,1)
+

Kµ−1∑
k=2

ds(µ,k),s(µ,k+1)
+ ds(µ,Kµ),bs

. (13)

Here, dbs,s(µ,1)
represents the distance between the first AP

in the µth sub-region and its associated BS. ds(µ,k),s(µ,k+1)

represents the distance between the kth AP and (k + 1)th AP.
ds(µ,kµ),bs

represents the distance between the last AP and its
associated BS. Therefore, the energy consumed by the MC
movement in the µth sub-region is defined as

Emµ = emLmµ . (14)

The MC’s charging energy consumption in the µth sub-region
is

Ecµ = Ptmc

Kµ∑
k=1

t
(
s(µ,k)

)
. (15)

Here, t
(
s(µ,k)

)
is the MC’s charging time when MC stops at

the kth AP in the µth sub-region.

III. PROBLEM FORMULATION

Based on the above system model, we formulate the MCs’
maximal wireless charging energy efficiency problem as

max
{Ω,S,T }

3∑
µ=1

Erµ

Emµ
+ Ecµ

(16)

s.t. Emµ
+ Ecµ ≤ Emc, (17)

d(h(k,i),mc) ≤ Rmc, h(k,i) ∈ Hk, (18)

d(n(k,j),mc) ≤ Rmc, n(k,j) ∈ Nk. (19)

Here, Erµ represents the total amount of energy received by
the SNs in the µth sub-region. Emµ

+ Ecµ represents the
total amount of energy consumption of the MC in the µth
sub-region. Eq. (17) indicates that the total amount of energy
consumed by the MC should be less than or equal to the total
energy carried by the MC. Eq. (18) and Eq. (19) indicate that
the distance between the SN and the MC is less than or equal
to the maximal charging radius of the MC.
Our optimization problem is to maximize the wireless charg-

ing energy efficiency, which is decided by Ω, S and T .
This is an AP selection problem (i.e., the MC can cover all
hungry SNs). The well-known Discrete Unit Disk Coverage
(DUDC) problem [23] is to cover all target points with the
fewest circles, which is an NP-hard problem. In our formulated
problem, the APs and hungry SNs can be regarded as the circle
centers and target points in the DUDU problem, respectively.
The essences of our problem and those of the DUDC problem
are the same. Hence, our formulated problem can be reduced to
the DUDC problem. Therefore, our wireless charging energy
efficiency maximization problem is also NP-hard.

IV. MAP ALGORITHM

According to the above analysis, as our wireless charging
energy efficiency maximization problem is an NP-hard prob-
lem, the optimal solution cannot be obtained in polynomial
time. Therefore, we propose the MAP algorithm to efficiently
solve this problem. The pseudo code of this MAP algorithm
is shown below.

Algorithm 1 MAP Algorithm
Input: Γµ,N−Γµ, where (µ = 1, 2, 3)
Output: Ω,S,T

1: Rmc ← λ
4π

√
Prmin

Lp

PtcGtGrη
;

2: for µ = 1 to 3 do
3: Θµ ← Γµ ∪N−Γµ;
4: while Γµ �= ∅ do
5: for υ=1 to |Θµ| do
6: Record the υth SN’s coordinates (xυ, yυ) in

the set Θµ;
7: Make the coverage zone of MC in each SN

0 ← (x− xυ)
2
+ (y − yυ)

2 −R2
mc;

8: ϑν ← the number of hungry SNs covered by
the MC at each SN;

9: Λ ← Λ ∪ {ϑν};
10: end for
11: κ ← The index of the largest element in Λ;
12: Λ ← ∅;
13: L ← the κ’s corresponding index in Θµ;
14: Sµ ← Sµ ∪ {L};
15: All SNs covered by MC at the Lth AP are denoted

by set �L;
16: Θµ ← Θµ\�L;
17: All hungry SNs covered by MC at the Lth AP are

denoted by set �L;
18: Γµ ← Γµ\�L;
19: ψ ← the L’s corresponding index in Θµ;
20: Ω(µ, ψ) ← 1;
21: �L ← the highest charging priority of the hungry

SNs in �L;
22: Πµ ← Πµ ∪ {�L};
23: τL ← the maximal charging time of the hungry

SNs in �L;
24: Tµ ← Tµ ∪ {τL};
25: end while
26: [Πµ index] ← sort(Πµ);
27: Sµ ← index(Sµ);
28: Tµ ← index(Tµ);
29: S ← S ∪ {Sµ};
30: T ← T ∪ {Tµ};
31: end for

According to the DBSCAN algorithm, the area not covered
by the wireless charging BSs is divided into three sub-regions.
In the three sub-regions, the hungry SNs and non-hungry
SNs are denoted by set Γµ and N−Γµ, respectively. All
SNs in the three sub-regions are denoted by set Θµ (here,
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Θµ = Γµ∪N−Γµ), where µ = 1, 2, 3. According to the Friis
transmission equation, the maximal charging radius Rmc of the
MC can be obtained. Lines 5 to 10 count the number of hungry
SNs covered by the MC (when the MC reaches each SN). ϑν

is a temporary variable used to store the number of hungry
SNs covered by the MC. Lines 11 to 14 represent that if the
MC stops at an SN that can cover the most hungry SNs, this
location is denoted by the Lth AP; then, we add the Lth AP to
set Sµ . All SNs and all hungry SNs covered by MC at the Lth
AP are denoted by sets �L and �L, respectively. Then, we
remove sets �L and �L from sets Θµ and Γµ, respectively.
The L’s corresponding index in Θµ is marked as ψ, and
Ω(µ, ψ) is set to 1. �L and τL are two temporary variables used
to store the highest charging priority and the MC’s charging
time (when MC stops at the Lth AP), respectively. Lines
27 and 28 obtain the target charging sequence Sµ and the
target charging time Tµ in the µth sub-region, respectively.
The three sub-regions will do the same operation; the AP
selection matrix Ω, charging sequence matrix S and charging
time matrix T all can be acquired.

V. SIMULATIONS

Simulations are set up as follows. We randomly distribute a
number of wireless SNs, ranging between 100 and 1000, in
the 2D square area of 100m × 100m. The battery capacities
of all SNs are 50J , and their initial energies are randomly
distributed in the interval of [0, 50J ]. The wireless charging
electromagnetic wave’s wavelength is 1GHz, and the antenna
polarization losses of all SNs are 0.5. The transmission gains
of all MCs are 10dBi. The charging powers and moving
speeds of all MCs are 5w and 2m/s, respectively.
In simulations, we evaluate the performance of our proposed

algorithm by comparing it to those of the Traveling Salesman
Problem (TSP) algorithm [24] and the On-Demand chaRging
(ODR) algorithm [25]. The ODR algorithm only considers
the residual lifetimes of the hungry SNs, and sorts the SNs
according to their residual lifetimes (from low to high). Then,
the MC charges the hungry SNs based on this order.
Fig. 3 shows the total charging groups formed by the three

algorithms, with different SNs’ deployment scenarios. In the
scenarios, the numbers of SNs are increased from 100 to 1000.
In each scenario, the distribution of SNs is the same for the
three algorithms. It can be seen that when the number of
SNs in the network is small, the numbers of charging groups
formed by the three algorithms are almost the same. With
the increase of deployed SNs, the numbers of groups formed
by the TSP algorithm and ODR algorithm increase greatly.
However, the number of groups formed by the MAP algorithm
relatively increases slowly because the TSP algorithm and the
ODR algorithm only perform charging grouping once, while
the MAP algorithm groups the SNs in multiple iterations to
find the “optimal” APs and save the MC’s moving energy
consumption.
Fig. 4 illustrates the comparison of wireless charging efficien-

cies achieved by the three algorithms in different SNs deploy-
ment scenarios. The wireless charging efficiencies achieved by
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Fig. 3. The number of groups with different numbers of SNs.

the three algorithms enhance with the increase of SNs because
the density of SNs becomes higher in each MC’s charging
coverage. As the wireless charging encounters attenuation
in space, the wireless charging efficiency is relatively low.
However, our proposed algorithm enables the MC to travel
shorter, cover more SNs with less APs and the wireless
charging energy efficiency is about 2 times higher than those
achieved by the other two algorithms.
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Fig. 4. The wireless charging efficiency with different numbers of SNs.

Fig. 5 shows the comparison of the numbers of dead SNs
in the network by adopting different algorithms. It can be
observed that our proposed algorithm leads to fewer dead SNs
than the other two algorithms do. With the increase of the
number of SNs in the network, the numbers of dead SNs
in the network by adopting TSP algorithm and the ODR
algorithm grow faster because the SNs’ residual lifetimes
and the distances between the hungry SNs and the MC are
considered by the MAP algorithm, and so the SNs can be
powered in time.
Fig. 6 shows the comparison of the total received wireless

energy by the SNs by different algorithms. It can be seen
that the amounts of total received wireless energy (by these
algorithms) improve with the increase of the number of SNs.
When the number of SNs in the network increases, our pro-
posed algorithm enables the SNs to receive more energy from
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Fig. 5. The number of dead SNs with different numbers of SNs.

the MCs than the other two algorithm do because our proposed
algorithm enables more SNs to simultaneously receive wireless
energy.
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Fig. 6. The total received energy with different numbers of SNs.

VI. CONCLUSION

In this work, we aim to efficiently power the SNs in the
whole charging area and maintain most of the SNs alive, by
leveraging multiple MCs to wirelessly charge the SNs located
in different sub-regions. In order to increase the MCs’ wireless
charging energy efficiency, we have further proposed the MAP
algorithm to efficiently solve the formulated problem. This
algorithm can well power all the hungry SNs in the WRSNs.
The simulation results demonstrate that our proposed MAP
algorithm can effectively improve the wireless charging energy
efficiency and reduce the DSP.
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