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Abstract—Network slicing has become an essential technology
for the future network. Obviously, it will play an important role in
satellite networks as well. To address that quality of service (QoS)
may be severely affected by embedding satellite virtual networks
(SVNs), we propose a method for SVN admission control that
can effectively guarantee the QoS of network slices by admitting
SVNs embedded in the physical satellite networks. Specifically,
firstly, we propose a two-stage SVN embedding mechanism that
decouples short-term resource allocation from long-term admission
control and resource leasing. Then, we consider the case of
uncertain system capacity due to the highly dynamic nature of
the satellite networks topology, and model the admission control
problem as a robust optimization problem. The robust problem
is transformed into a convex counterpart by using the Bernstein
approximation. Finally, we solve the resource allocation problem
by converting it into a convex problem. The simulation results
show the effectiveness of the proposed method.

Index Terms—Low-earth-orbit satellite, network slicing, admis-
sion control, resource allocation, robust optimization

I. INTRODUCTION

The 6G requires the support of Non-Terrestrial Networks
(NTNs) to facilitate ubiquitous and high-capacity global con-
nectivity [1]. Low Earth Orbit (LEO) satellites in NTN provide
an affordable solution for global coverage networks [2]. There-
fore, the convergence of LEO satellite networks and terrestrial
networks is an inevitable trend for B5G and even 6G to meet
the growing demand [3].

Network Slicing (NS) is a technology by creating virtual
networks to provide customized services for various needs as
defined by 3rd Generation Partnership Project (3GPP) [4]. NS
uses network virtualization to flexibly allocate infrastructure
resources to meet the diverse Quality of Service (QoS) re-
quirements of user terminals [5]. NS has been widely recog-
nized as a promising technology and has been well studied
in terrestrial networks [6]. NS is expected to bring greater
flexibility to satellite network operators, reduce construction
and operating costs, and expand the range of applications for
satellite communications [7]. Recently, NS in satellite networks
has attracted extensive interest from researchers [8], [9]. A
detailed framework for slicing satellite integration within 5G
is presented [10].
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Advance Research Project D030301; in part by the Natural Science Foundation
of Chongqing under Grant cstc2020jcyj-msxmX0878.

However, virtualization can significantly affect user QoS in
Virtual Networks (VNs), because VNs share the same physical
network, and in particular, the highly dynamic nature of the
LEO satellite networks topology leads to system capacity insta-
bility that can have a serious impact on user QoS in SVN.
Admission control for requesting embedded VNs is one of
the important ways to ensure QoS for users in VNs. A fast
embedding algorithm for SVN is proposed [11]. An embedding
algorithm for multivariate SVN considering various constraints
of satellite networks is proposed [12].

Therefore, to address the problem that users sharing the same
physical satellite networks may have a serious impact on SVN
user QoS, we propose a method to effectively guarantee the
user QoS and the resource utilization of SVNs by selecting
appropriate SVNs embedded in the physical network. The
contributions of this paper are as follows. Firstly, we propose
a two-stage SVN embedding mechanism that decouples short-
term resource allocation from long-term admission control and
resource leasing. The long-term admission control and resource
leasing are then described as robust optimization problems,
which are then solved by transforming them into convex opti-
mization problems using the Bernstein approximation. Finally,
the resource allocation is modelled as a maximally fair band-
width allocation problem and solved after being transformed
into a convex optimization problem.

The rest of this paper is organized as follows. Section II
introduces the system model and describes the problem of SVN
embedding. Section III presents a two-stage mechanism for
embedding SVN and decomposes the SVN embedding problem
according to this mechanism. Section IV discusses simulation
results. Finally, we conclude in Section V.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. Business Model

We refer to the architecture in [13] to separate the roles
of satellite networks virtualization into three logical roles, in-
cluding Satellite Infrastructure Provider (SInP), Satellite Virtual
Network Operator (SVNO) and Satellite Service Provider (SSP).
SInP owns the satellite networks infrastructure resources and
physical radio resources. SVNO leases physical resources from
SInP for operations. SSP provides services directly to users.
Specifically, firstly, SVNO converts the service request into an
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SVN demand request when the SSP initiates a service request.
Then, SVNO decides whether to respond to the request from
the SSP based on the request and the currently available leased
network resources. SVNO leases resources from SInPs and then
embeds the corresponding SVN into the physical network if the
SVNO receive the request. Finally, the SSP provides services
to the user through the SVN provided by SVNO.

B. System Model

We assume that there are S=|S = {1, ..., s, ...,S}| SInPs that
can cover the same area, and the area is covered by a unique
satellite for each SInP, so the satellite deployed by the SInP
s can be denoted by the same symbol s. Assuming that the
network is fully shared, the SVNO can lease physical resources
from any SInP. Denoting the lease ratio of satellite s by ps ∈
[0, 1]. In general, the SInP may need to keep some resources
for itself [14], i.e., the resources are not fully leasable. Let pmax

s

denote the upper limit of the leasable ratio, so

ps ∈ [0, pmax
s ], ∀s (1)

Denoting the price of fully leased satellite s by cs, the leasing
cost paid by SVNO to SInP s can be obtained as

csvno
s = pscs, ∀s (2)

We assume that there are K= |K = {1, ..., k, ...,K}| service
requests arriving from SSPs, and each SSP requests only one
SVN to serve its users, then the SVN can be denoted by
the same notation k. The requested SVNs are dynamically
embedded in the physical network, and the SVNO accepts the
embedded requests from these SVNs if the physical network
resources can meet their demands. Let ak be the admission
indicator of SVN k, if admitted, ak = 1, if blocked, ak = 0, so
the binary constraint can be obtained as

ak ∈ {0, 1}, ∀k (3)

Let ϕr and ϕp denote the admission reward and blocking penalty
for SVN k, respectively, so the revenue earned by SVNO is

Rsvno =

k∈K

(akϕ
r
k − (1− ak)ϕ

p
k)−


s∈S

pscs (4)

Assuming that user arrivals in SVN k obey a Poisson process
with intensity λk, denoting by rk the minimum rate requirement
for the SVN k to provide the service, the average traffic of SVN
k requests is denoted as ρk = rkλk according to the similar
study in [15]. The resource allocation strategy is denoted as y =
{y1, ...,yk, ...,yK}, where yk = {yk,1, ...,yk,i, ...,yK,|Uk|}
denotes the resource allocation strategy for the users in SVN
k, where Uk denotes the set of users in SVN k. The capacity
Ck(dk,p,yk) allocated to the SVN k is decided by the user
distribution dk, the leasing strategy p and the resource alloca-
tion strategy yk. The system can be in a stable state only if the
allocated traffic is not less than the requested throughput, so the
system stability constraint is


k∈K

akρk ≤

k∈K

Ck(dk,p,yk) (5)

Let yk,i = (lsk,i, β
s
k,i) denotes the resource allocation strategy

for the ith user uk,i in the SVN k, where lsk,i is the the associate
indicator for user uk,i and satellite s. The user in the admitted
SVN is associated with only one satellite, and the satellite does
not serve the user in the rejected SVN, the constraint can be
obtained as

lsk,i ∈ {0, 1}, ∀s, k, i (6)

s∈S

lsk,i = ak, ∀k, i (7)

where βs
k,i denotes the proportion of resources allocated to the

user uk,i by the satellite s. The resources allocated to the user
uk,i by the satellite s no more than the resources leased by the
SVNO, we can obtain the constraint as

k∈K


uk,i∈Uk

akl
s
k,iβ

s
k,i ≤ ps, ∀s (8)

We assume that the licensed spectrum used by different SInPs
is orthogonal, so there is no interference between different
satellites, and the average transmit power of satellite s can
be obtained as qs using the fixed power mechanism, therefore,
the spectral efficiency between satellite s and user uk,i can be
obtained using Shannon’s formula as

ηsk,i = log2(1 +
gsk,iqs

σ2
), ∀s, k, i (9)

where gsk,i = 10(G(θ)+Gr+Lf )/10 denotes the downlink channel
gain between the satellite s and the user uk,i, Gr denotes the
user receive antenna gain, Lf denotes the free space propagation
loss, σ2 denotes the power spectral density of additive Gaussian
white noise, and G(θ) denotes the satellite to user transmit
antenna gain at the z-axis angle. Assuming that the antenna’s
z-axis always points to the subsatellite point, and referring
to the radiation characteristics of the satellite single-beam
antenna given in the International Telecommunication Union
Recommendation ITU-S.672 [18], the reference model for the
estimation of G(θ) is modeled as

G(θ) =




Gs − 3(θ/θα)
2dBi, 0 ≤ θ ≤ 2.58θα

Gs − 20dBi, 2.58θα ≤ θ ≤ 6.32θα
Gs − 25 lg(θ/θα)dBi, 6.32θα ≤ θ ≤ θβ
0dBi, θβ ≤ θ

(10)

where Gs is the maximum gain of the satellite transmitting
antenna, θα is the half-beam angle of the satellite, and θβ is the
value of the third equation in (10) when G(θ) = 0.

Let Bs denotes the downlink bandwidth from satellite s to the
user terminal, the traffic rk,i allocated to user uk,i is determined
by the resource allocation strategy yk,i, and the traffic obtained
from user uk,i allocation can be obtained as

rk,i =

s∈S

lsk,iβ
s
k,iBsη

s
k,i, ∀k, i (11)

and the user rate constraint can be obtained as
s∈S

lsk,iβ
s
k,iBsη

s
k,i ≥ rk, ∀k, i (12)

296



C. Problem Statement

Our optimization objective of admission control is the max-
imum revenue of SVNO, we consider user fairness, so the
optimization objective of resource allocation is to maximize
the fair bandwidth allocation. The system utility U of resource
allocation can be obtained as

U =
∑
s∈S

∑
k∈K

∑
uk,i∈Uk

lsk,i ln(β
s
k,iBsη

s
k,i) (13)

Based on the above analysis, the optimization problem of this
paper can be obtained as follows.

P1 : max
a,p,y

Rsvno + U

s.t. (1)(3)(5)(6)(7)(8)(12)
(14)

III. SOLUTION TO THE PROBLEM

A. A Two-stage SVN Embedding Mechanism

The three optimization variables in problem P1 are hard
to solve simultaneously, because SSP needs to request SVN
some time in advance. Which means that there are variables
that should be optimized before the user arrives, i.e., the
admission control and resource leasing are completed before
the user arrives, while the resource allocation decision must
be available after the admission decision and after the user
arrives. To solve these mismatched optimization problems, we
propose a two-stage embedding mechanism for SVNs as shown
in Fig. 1, which decomposes the optimization problem P1 into
two stages to proceed. In the first stage, the admission control
and resource leasing strategies are jointly optimized, and the
SVNO applies admission control to the requesting SVN and
leases resources from the SInP based on the SVN traffic demand
and the estimated satellite capacity. In the second stage, under
the condition of obtaining the admission control strategy and
leasing strategy, the SVNO allocates resources to the arriving
users in the prospective SVN, including satellite association and
physical resource allocation.

The optimization variables of the first stage include admission
control strategy and resource leasing strategy, so the optimiza-
tion objectives of the first stage is

max
a,p

Rsvno (15)

To obtain the first stage subproblem, we need to remove
the second stage independent constraints of problem P1 and
decouple the optimization variables that are coupled with the
second stage. Firstly, since (6), (7), (8) and (12) are constraints
independent of the first-stage decision, they are removed di-
rectly. Then, since the user distribution and resource allocation
in (5) are unknown at the time of the first stage decision, they
need to be decoupled, but direct decoupling is very difficult due
to the different time scales, so we adopt an indirect decoupling
method. Since the capacity available from satellites is related
to the network state and user distribution, and the motion of
satellites has regularity, the capacity available from the current
system can be estimated based on the current network state

Fig. 1. The two-stage mechanism for SVN embedding.

and random users, and then the expected value of the capacity
available from the system in the current state is obtained by
combining the historical data as

E[Ct
s] = αsC

t
s + βsE[Rt−

s ] (16)

where E[R
t−
s ] denotes the system capacity expectation at the

last evaluation when satellite s in the current state, Ct
s denotes

the estimate of the maximum capacity currently available from
the satellite based on the current state of the satellite and
randomly generated users. αs is the ratio constant used to
reconcile the current network state with the historical network
state, and αs + βs = 1, so that (5) can be rewritten as∑

k∈K

akρk −
∑
s∈S

psE[Ct
s] ≤ 0 (17)

Based on the above analysis, the optimization problem P2
for the first stage can be obtained as follows

P2 : max
a,p

Rsvno

s.t. (1)(3)(17)
(18)

The optimization variable in the second stage is the resource
allocation strategy, so the optimization objective of the second
stage can be obtained as

max U (19)

From the above analysis, (6), (7), (8) and (12) are directly
retained in the second stage, and (1) and (3) are are directly
deleted. (5) is also removed directly, as the second stage is
completed after the first stage. The second stage is to allocate
resources to the users who are allowed into the SVN set
Ka = {k|ak = 1, k ∈ K}, so ak = 1 in (7) and (8), so (7)
and (8) are rewritten as∑

s∈S
lsk,i = 1, ∀k, i (20)
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∑
k∈Ka

∑
uk,i∈Uk

lsk,iβ
s
k,i ≤ ps, ∀s (21)

Based on the above analysis, the optimization problem P3
of the second stage can be obtained as

P3 : max
y

∑
s∈S

∑
k∈Ka

∑
uk,i∈Uk

lsk,i ln(β
s
k,iBsη

s
k,i)

s.t. (6)(12)(20)(21)
(22)

B. Robust Admission Control Strategy

Unfortunately, the available capacity of satellites is time-
varying because the topology of satellite networks is highly
dynamic due to the fast movement of LEO satellites and the
distribution of users is unknown, which leads to the constraint
(17) not being directly applicable to solve practical problems.
A possible solution to this problem is to directly change the
stochastic parameters with uncertainty to upper or lower bounds
that satisfy the demand, so that the resulting solution is always
feasible in practice. However, such an approach leads to a
great waste of resources, since the random parameters are
upper or lower bounds that generally occur with low proba-
bility. Therefore, in order to improve resource utilization and
to guarantee QoS to users with high probability, the “hard”
constraint (17) can be converted to a tolerable “soft” constraint,
i.e., the original constraint is allowed to be unsatisfied with an
acceptable low probability. Assuming that the probability that
the “hard” constraint being satisfied at least 1−τ , the constraint
(16) can be converted into the following chance constraint.

Pr

{∑
k∈K

akρk −
∑
s∈S

psE[Ct
s] ≤ 0

}
≥ 1− τ (23)

Although the chance constrained optimization problem is
hard to solve directly, it can be solved efficiently using the
Bernstein approximation [16]. Consider a chance constraint of
the following form

Pr

{
f0(p) +

∑
s∈S

ηsfs(p) ≤ 0

}
≥ 1− τ (24)

where p is a certain parameter with and ηs is a random variable
with marginal distribution ξs. For a given distribution ηs, if the
constraint satisfy the following three assumptions: 1) fn(p) is
affine with respect to p, where s = 1, 2, ...,S. 2) The random
variables ηn are mutually independent, where s = 1, 2, ...,S.
3) ηs has bounded support [−1, 1], where s = 1, 2, ...,S. The
chance constraint can be converted into the following relatively
conservative convex approximation form

f0(p) +
∑
s∈S

max{µ−
s fs(p), µ

+
s fs(p)}

+

√
2 ln(

1

τ
)

(∑
s∈S

(σsfs(p))
2

)1/2

≤ 0

(25)

In constraint (23), firstly, ak ∈ {0, 1} is relaxed to ãk ∈ [0, 1].
Then, the uncertain parameter Ct

s is processed using the Bern-
stein approximation, so that the original constraint is satisfied

with at least the probability of 1− τ . Since the satellite motion
is regular, we assume that the bounded support [Ct,l

s , Ct,h
s ]

for the capacity available from the satellite s can be obtained
from the historical data, and the parameter ξs is obtained after
introducing the auxiliary variables Γl

s = (Ct,h
s − Ct,l

s )/2 ̸= 0
and Γh

s = (Ct,h
s + Ct,l

s )/2 to normalize Ct
s as

ξs =
Ct

s − Γh
s

Γl
s

∈ [−1, 1] (26)

Clearly, the three assumptions for which the Bernstein
approximation holds are satisfied after treating the chance
constraint (23). Let fs(p) = Γl

sαsps and f0(p) =∑
k∈K ãkrk −

∑
s∈S Γh

sβspsE[R
t−
s ], then (24) is equivalent to

(23). Substitute fs(p) and f0(p) into (25), we obtain
∑
k∈K

ãkrk −
∑
s∈S

(
γsαsps + βspsE[Rt−

s ]
)

−
√
2 ln(

1

τ
)

(∑
s∈S

(σsΓ
l
sαsps)

2

)1/2

≤ 0

(27)

where γs = Γh
s −µ+

s Γ
l
s, the solution obtained by replacing (27)

with (23) leads (5) to be satisfied with at least the probability
of 1− τ , i.e., leads the problem P2 to be satisfied with at least
the probability of 1 − τ . In this study, based on the properties
of ξs, we set µ+

s = 0.5 and σs =
√
1/12.

Based on the above analysis, the optimization problem P2
is transformed into the following problem.

P̃2 : max
ã,p

Rsvno

s.t. (1)(27), ãk ∈ [0, 1], ∀k
(28)

Obviously, problem P̃2 is a convex problem, which can be
solved directly using the interior point method to obtain the
relaxed {ãk}∗ and the corresponding {p̃s}. Since {ãk}∗ is the
relaxed optimal admission control strategy, then {p̃s} is the
upper bound of the optimal leasing strategy. In order to reduce
the gap with the upper bound, we complete the {ãk}∗ rounding
and then substitute it into P̃2 for solving again to get {ps}∗.
Now, we get the first stage of strategy.

C. Resource Allocation

Because the admission control in the first stage uses a robust
optimization approach, it leads to a possible shortage of leased
resources, which leads to the fact that the QoS of all arriving
users cannot all be guaranteed, i.e., constraints (12) and (20)
lead to a possible unsolvability of problem P3. To guarantee
the QoS of the served users and the solvability of the problem
P3, session-level admission control is added in the resource
allocation stage, so that constraints (12) and (20) are replaced
with constraints (29) and (30), respectively, as follows.

∑
s∈S

lsk,iβ
s
k,iBsη

s
k,i

≥ lsk,irk, ∀k ∈ Ka, i (29)

∑
s∈S

lsk,i ≤ 1, ∀k ∈ Ka, i (30)
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Now, the problem is always solvable, but it is hard to solve the
problem directly for the following reasons: 1) The problem is
non-convex due to the binary variable lsk,i. 2) The multiplicative
coupling of variables lsk,i and βs

k,i in the constraint leads to a
non-convex problem. 3) The multiplication of the variable lsk,i
and the concave function about βs

k,i in the objective function
leads to a non-convex problem.

Obviously, the problem is a MINLP problem, which is usually
non-convex and NP-hard, and it is hard to find its global optimal
solution, so it must be simplified and transformed into a convex
problem for solution. Firstly, the binary constraint lsk,i ∈ {0, 1}
is relaxed to lsk,i ∈ [0, 1] on a continuous interval, and the
relaxed l̃sk,i can be interpreted as a time-sharing factor, which
represents the time ratio of user uk,i associated with satellite
s. Then, because the objective function and the variables lsk,i
and βs

k,i in (29) are multiply coupled leading to the problem is
still non-convex. For this problem, we define auxiliary variables
ςsk,i = lsk,iβ

s
k,i, when user uk,i is associated with satellite s,

lsk,i = 1, there is ςsk,i = βs
k,i, when user uk,i is not associated

with satellite s, lsk,i = 0, to maximize the utility, satellite
does not allocate resources to user uk,i, so βs

k,i = 0, there
is ςsk,i = βs

k,i. We can obtain the problem P̃3 as

P̃3 : max
{l̃sk,i},{ς

s
k,i}

∑
s∈S

∑
k∈Ka

∑
uk,i∈Uk

lsk,iln

(
ςsk,i

l̃sk,i
Bsη

s
k,i

)

s.t. C1 :
∑
s∈S

l̃sk,i ≤ 1, ∀k, i

C2 :
∑
k∈Ka

∑
uk,i∈Uk

l̃sk,iς
s
k,i ≤ ps, ∀s

C3 :
∑
s∈S

ςsk,iBsη
s
k,i ≥ l̃sk,irk, ∀k, i

C4 : l̃sk,i ∈ [0, 1], ∀s, k, i

(31)

The C2 and C3 in P̃3 obtained by variable substitution are
linearly constrained. Fortunately, according to the nature of the
perspective function, it is known that the objective function of
problem P̃3 is simultaneously transformed into the perspective
function of the concave ln(·) function by variable substitution,
and since the perspective operation is convexity-preserving, the
objective function of P̃3 is a linear summation of a series
of concave functions. In summary, the problem obtained by
variable substitution is a typical convex problem that can be
solved directly using the interior point method to obtain the
resource allocation strategy.

IV. SIMULATION RESULTS AND DISCUSSIONS

Our simulation is based on MATLAB. For simplicity, the
proposed admission control method is denoted as Robust Op-
timization Admission Control (ROAC). In this paper, ROAC
is compared with two admission control strategies that do not
possess robustness. The first is Worst Case Admission Control
(WCAC), which means that the strategy always uses Ct,l

s as
an estimate of the available capacity. The second is Fixed
Admission Control (FAC), which means that the strategy always

TABLE I
MAIN PARAMETERS

Parameters Value
Orbital Altitude {600,700,800} km
Number of LEO Satellites 5
Carrier Frequency 16 GHz
Bandwidth of Satellites 10.5 MHz
Maximum Satellite Transmitting Antenna Gain 41.6 dBi
User Receive Antenna Gain 20 dBi
Power Density of Noise -174 dBm/Hz
Minimum SNR Required for Coverage -10 dB
Maximum Uncertainty in Capacity Estimates ±10%
User Data Rate {0.5, 0.6, 0.7, 0.8} Mbps
Leasing Price 1 unit/MHz
Admission Reward 1 unit/SVN
Blocking Penality 2 unit/SVN

uses Γt,h
s as the predicted value of the available capacity. The

main simulation parameters are shown in Table I.
Fig. 2 shows the effect of SVN arrival rate on SVN block-

ing probability. Firstly, it shows that higher SVN arrival rate
means more resources are required, which leads to higher
SVN blocking probability with limited resources. Among the
three strategies, the WCAC has the highest SVN blocking
probability, because it considers that the system capacity always
has the largest (worst) uncertainty. The FAC has the lowest
SVN blocking probability, because it does not consider the
uncertainty of the system capacity and allows more SVNs to
be embedded in the physical network. Clearly, our proposed
ROAC reflects a balance between the WCAC and FAC, as it is
based on practical situations that properly take into account the
highly dynamic nature of the LEO satellite networks topology
leading to system capacity uncertainty, which would result in a
balanced admission control strategy.

We define the system stability probability as the ratio of
the number of successes associated with reaching all users
to the number of user arrivals, i.e., the probability that the
problem P2 can be solved. Fig. 3 shows the effect of different
strategies on the system stability probability. Among the three
strategies, the WCAC obtains the highest probability of leading
to system stability, which is about 91%. The FAC leads to the
lowest probability of system stability, which is about 50%. Our
proposed ROAC obtains the solution leading to system stability
with a probability of about 84%, and ROAC can improve the
stability of the system by about 34% compared with the FAC.

To demonstrate the benefits of balancing our ROAC, we
conducted simulations from the user perspective and the system
perspective, respectively. Firstly, we measure the user QoS
performance in terms of user satisfaction (the ratio of the total
number of users receiving the service to the total number of
users arriving among all users embedded in the SVN). As shown
in Fig. 4, user satisfaction is highest under WCAC with about
99.5%, which satisfies the user service requests in the SVN
well, resulting in almost all users being served. User satisfaction
is lowest under FAC, about 91.6%, because more SVNs are
running in the network, resulting in more users not being
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Fig. 2. The effect of SVN arrival rate
on blocking probability.
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Fig. 3. Probability of system stabil-
ity under different admission control
strategies.

10 11 12 13 14 15

Arrival rate of SVNs( =0.1)

0.8

0.85

0.9

0.95

1

A
v
er

ag
e 

p
ro

b
ab

il
it

y
 o

f 
u
se

r 
sa

ti
sf

ac
ti

o
n

ROAC WCAC FAC

Fig. 4. Probability of user satisfac-
tion under different admission control
strategies.
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Fig. 5. The utilization of leasing re-
sources under different admission con-
trol strategies.

served. Our proposed ROAC takes into account the uncertainty
of the appropriate system capacity, and the satisfaction rate
is about 98.8%, which is only 0.7% lower than WCAC, but
7.2% higher than FAC. Then, we use the utilization of system
leased resources (the ratio of the minimum resources required
to reach the user to the leased resources) as a measure of system
performance. As shown in Fig. 5, the resource utilization under
WCAC, FAC, and ROAC strategies are about 81%, 95% and
85%, respectively. Obviously, the resource utilization of ROAC
achieves a good balance between WCAC and FAC.

In summary, our proposed ROAC guarantees user QoS in
SVN better than FAC and saves resources better than WCAC.
ROAC strikes a balance between user QoS and resource utiliza-
tion, which is more feasible when solving practical problems.
ROAC avoids the low resource rate caused by WCAC and the
severe impact on user QoS caused by FAC.

V. CONCLUSION AND FUTURE WORK

In this paper, we studied the admission control and resource
allocation problems of SVN, in order to solve the problem that
the QoS of users in SVN is severely affected by the uncertainty
of satellite capacity. Firstly, we decoupled admission control
and physical resource leasing from physical resource alloca-
tion. Considering the uncertainty of system capacity, the SVN
admission control and physical resource leasing problem was
then modelled as a parametric uncertainty model with chance
constraints, and based on this, robust admission control and
resource leasing strategies are proposed. Finally, the resource al-
location was modelled as a maximum fair bandwidth allocation
problem and is transformed into a convex optimization problem
to solve. Simulation results have shown that the proposed ROAC

can better improve the resource utilization and guarantee the
QoS of users compared with WCAC and FAC. Future work is
in progress to consider the impact of more uncertain parameters
on the system.
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