
P4-sKnock: A Two Level Host Authentication and
Access Control Mechanism in P4 based SDN

Aneesh Bhattacharya
Dept of CSE

IIIT Naya Raipur, India
aneesh19100@iiitnr.edu.in

Risav Rana
Dept of ECE

IIIT Naya Raipur, India
risav19101@iiitnr.edu.in

Suvrima Datta
Dept of CSE

IIIT Naya Raipur, India
suvrima@iiitnr.edu.in

Venkanna U.
Dept of CSE

IIIT Naya Raipur, India
venkannau@iiitnr.edu.in

Abstract—The adoption of Software-Defined Networks (SDN)
and the shift towards programmable data planes have led to
better network management. However, this has not been accom-
panied with the implementation of robust host authentication
or access control mechanisms to improve network security
and prevent unauthorized access to the network. The current
literature has explored the implementation of the widely adopted
authentication mechanism - port knocking in SDN to address
the former. However, they suffer from two major drawbacks
making them vulnerable to MITM (Man-In-The-Middle) attacks:
unsecured transfer of the port knocking sequences between
the SDN controller and hosts, and the lack of host identity
verification mechanisms post port knocking authentication. This
paper introduces P4-sKnock: a P4 based two level host authen-
tication and access control mechanism. The first level introduces
encrypted dynamic port knocking to secure the transfer of port
knocking sequences over a compromised channel by encrypting
them. Further, a challenge-response host identity verification
mechanism is introduced as a second level authentication measure
following which a host can be authorized, quarantined or blocked
owing to the programmability of the P4 switch providing robust
access control. Experimental analysis shows that P4-sKnock can
authenticate a new SDN host within 500 ms and mitigate MITM
attacks like IP spoofing and replay attacks making it significantly
more secure than previous P4 based port knocking authentication
systems.

Index Terms—SDN, P4, port knocking, encrypted dynamic port
knocking, MITM, replay attack, IP spoofing

I. INTRODUCTION

The adoption of SDN has led to a significant increase
in the manageability and programmability of networks [1].
Separation of the data plane and control plane has not only
reduced the dependency of users on private vendors but has
also provided opportunities for them to design, develop and test
their own networking algorithms. Initially, OpenFlow [2] was
introduced as one of the first SDN standards but it had its own
drawbacks like limited support for a fixed number of header
fields and new hardware requirement to support new versions
being some of them. Keeping the original SDN architecture
intact, P4 (Programming Protocol-Independent Packet Proces-
sors) [3] was proposed to offer more control in the data plane
by specifying how data plane devices will process packets.
However, SDN is still in its initial stages of implementation
and its architecture has some pressing vulnerabilities [4], [5]
which can be exploited by attackers. Some of the notable ones

h1
10.0.1.1

h2 (Attacker host)
10.0.1.2

Controller

P4 Switch s1 P4 Switch s2

Port knock packets
h2 spoofs IP of h1
and replays port

knocking packets

Attacker sniffs
and obtains port

knocking packets

Controller
authenticates h1 and

installs flow rules

Controller
authenticates h2

(spoofing h1) and
installs flow rules

Port knock packets
inside a PKT_IN

Spoofed port knock
packet inside a

PKT_IN

Internet

1

2
3

4

5

6

7

Benign host
communication

Attacker host
communication

Fig. 1: Vulnerabilities of existing implementations of P4 based port
knocking in SDN environments being exploited by an attacker (h2)

are the absence of reliable interconnections among network
elements and exposed communications channels. Further, the
lack of authentication mechanisms in SDN leads to adversaries
gaining illicit access to the network [6]. Vulnerability to attacks
like Denial of Service (DoS) and MITM attacks (spoofing) can
be exploited by attackers to hamper the confidentiality and
integrity of the network and compromise hosts and switches
[7]. This in turns leads to the lack of trust on the network,
making it unusable and resulting in poor QoS.

In the current literature, firewalls are used as a first line
of defence against malicious SDN hosts [8]. However, to
establish trust and reliability among hosts in the network,
robust host authentication mechanisms must be present for
SDN environments after the initial screening by firewalls.
In traditional networks, a well known host authentication
mechanism: port knocking is used [9]. In port knocking, a
host sends packets (port knocks) in a specific sequence to the
specified server ports. This sequence is a secret known only by
the host and the server. The server verifies the sequence of port
knocks and allows a connection to be established by the host if
sequence is correct. In an SDN context, this technique has been
recently adapted and implemented as a mechanism to authorise
hosts [10] [11]. Further, the offloading of the port knocking

278978-1-6654-9927-9/22/$31.00 ©2022 IEEE APCC 2022

mechanism to P4 switches has also been explored [12]. A
key drawback of these approaches is that the same knocking
sequence is used by the hosts to connect to the server. If this
sequence is compromised, the authentication mechanism fails
[13]. To overcome this, [14] introduced the concept of dynamic
port knocking in SDN. However, there are still issues with the
current literature on the implementation of port knocking in
SDN which can be summarized using Fig. 1 as follows:

• The absence of encryption of the port knocking sequence
during its transfer between the controller and hosts or
vice-versa can lead to its compromise. The communica-
tion from a benign host to switches can be intercepted by
attackers shown by label 4. Then attackers can spoof the
IP of an authorized host and send the sniffed port knock
sequence to gain access to the network.

• The lack of a challenge-response mechanism post port
knocking authentication to verify a host’s identity can
lead to attackers establishing unauthorized connections
by simply replaying the port knocking packets without
having to explicitly verify their identity as demonstrated
by labels 5, 6 and 7.

To overcome the above highlighted issues, this paper pro-
poses P4-sKnock: a P4 based two level host authentication
and access control mechanism for SDN environments. The
proposed solution has two stages: (a) encrypted dynamic port
knocking and (b) challenge-response host identity verification.
The first part is enforced when a new host tries to communicate
with another host in the network. The controller assigns a
unique port knocking sequence to this new host which is RSA
(Rivest-Shamir-Adleman) encrypted and sent as the payload
of three consecutive packets. In this manner, even if the
communication channel is compromised and the attackers sniff
and intercept the packets, they cannot obtain the port knocking
sequence as it is encrypted. The second part is enforced when
this host tried to connect to the network using the issued
knocking sequence. The encrypted knocking sequences are
verified by the controller who then issues a challenge to this
host for the verification of its identity. The challenge issued is a
randomly generated 256 bit key which is RSA encrypted using
the public key of the host. The host is required to respond with
the decrypted key, re-encrypted with the controller’s public
key and digitally signed by it using the RSA digital signature
algorithm to prevent the key from being exposed by MITM
attacks. The host can only decrypt the key and correctly
digitally sign it if it has the genuine private key. Thus, this
step protects against replay and spoofing attacks by attackers
as only genuine hosts can respond with the correct signed key
and be allowed to connect to the network.

In summary, our paper makes the following significant
contributions:

• Securing the transfer of port knocking sequences between
the SDN controller and hosts over an unsecured com-
munication channel and protecting the network against
MITM attackers by using two step authentication.

• Enforcing access control via the SDN controller to allow,
quarantine or block hosts from communicating in the net-
work by dynamically updating Match-Action flow rules
in the P4 programmable switches.

• Implementing such a two step solution for SDN host
authentication and access control in mininet using BMV2
switches and analysing its latency to show the effective-
ness of the solution in a real life deployment scenario.

The structure of the paper is as follows - Section II
formulates the problem statement followed by section III
which describes the proposed methodology of the P4-sKnock
host authentication and access control mechanism. Section
IV presents the implementation and result analysis of our
proposed solution. Conclusion and areas of future research are
lastly described in section V.

II. PROBLEM FORMULATION

The existing port knocking authentication mechanisms in
SDN follow an architecture which consider a host to host
communication scenario. Packets from authenticated hosts
{h1, h2, ..., hi} ∈ Hauth are forwarded through programmable
switches Sw. An SDN controller C is used to update flow rules
in the switches. There exist new hosts {n1, n2, ..., nj} ∈ N
that are previously unseen by the switches Sw and the con-
troller C, which need to be authenticated by port knocking
before they can communicate in the network. Each host has
a unique IP address {ip1, ip2, ..., ipx} ∈ IPid which is used
as their identifier. Let there exist an unseen host nγ with IP
ipγ and an attacker host nθ with IP ipθ. Host nγ tries to
communicate to an authenticated host h4 and nθ sniffs the
network. To join the network, nγ performs port knocking and
gets authenticated as,

nγ
Sends port knocking packets−−−−−−−−−−−−−−−→ Sw (1)

nγ ∈ Hauth (2)

Attacker host nθ sniffs these port knocking packets and further
obtains the IP of nγ and spoofs it,

nθ
Obtain ipγ←−−−−−− nγ (3)

ipθ = ipγ (4)

Now nθ has the identifier IP as ipγ and can simply replay the
port knocking packets pretending to be nγ . This will allow nθ

to be authenticated by port knocking and perform attacks on
the desired host.

nθ
Replay port knocking packets−−−−−−−−−−−−−−−→ Sw (5)

nθ ∈ Hauth (6)

nθ
Perform attacks−−−−−−−−→ h4 (7)

This shows how the existing port knocking implementations
in SDN are vulnerable to IP spoofing and replay attacks.

279

Install switch rules in s1
table_add ipv4_lpm ipv4_forward 10.0.1.4/32 10.0.1.2 =>

00:00:0a:00:01:04 4 table_add ipv4_lpm

ipv4_forward 10.0.1.2/32 10.0.1.4 =>
00:00:0a:00:01:02 2

Controller

P4 Switch s1

h2
10.0.1.2

pkt (dst_ip = 10.0.1.4)1

Check in
match/action table2

3 No match found in
match/action table

Packet forwarded to
controller as PKT_IN 4

Generate port knock sequence5

h4
10.0.1.4

Generate 3 packet with
payload: RSA encrypted

sequence using h2’s
public key

6

7 Forward the packet
to h2

+ =

8
Decrypt the packet using
its private key to obtain
the port knock sequence

(a) Initial communication from h2 to h4 and port knock
sequence assignement by the controller for h2

P4 Switch s1

h2
10.0.1.2

h4
10.0.1.4

+

=

(b) h2 performs encrypted dynamic port knocking and is
verified by the controller

1

Generate 3 packets
with port knock
sequences RSA
encrypted using the
controller’s public
key as payload

2 h2 performs port
knocking

Controller

Decrypt the payload of obtained port
knocking packets using its private key 3

Verify the port knocking
sequence4

P4 Switch s1

h2
10.0.1.2

h4
10.0.1.4

(c) Challenge-response mechanism issued by controller to
verify h2's identity

4
Decrypt the packet payload
using its private key to obtain
the key, K

Controller

Generate a packet with payload: RSA
encrypted K with h2 public key2

Generate random 256 bit key, K1

+ =

+ =

5
Generate a packet with payload: RSA encrypted K
with controller public key and sign it

+ =

3 Send to h2

6 Send to Controller

7 Decrypt the packet payload using its
private key to obtain the key, K’

8

Verify the obtained key, K’

Controller

P4 Switch s1

h2
10.0.1.2

pkt (dst_ip = 10.0.1.4)2

1

h4
10.0.1.4

3

(d) Installation of flow rules for h2 into the P4 switch by
the controller

Forward to h4

PHASE II

PHASE I

+
=

Fig. 2: Proposed P4-sKnock host authentication and access control methodology

III. PROPOSED METHODOLOGY

This section describes the host authentication and access
control mechanism of P4-sKnock which is divided into two
phases overall as illustrated in Fig. 2. The first phase is focused
on encrypted dynamic port knocking based authentication of
a new host followed by the second phase which initiates a
challenge-response mechanism to verify the identity of the
host. The flow of action in each phase is numbered numerically
in the figure.

A. System Components

The details of each component of the P4-sKnock host
authentication mechanism is as follows:

1) Controller: The controller is a central entity that keeps
track of every host connected to the network. It contains
a public key repository module, a port knock sequence
generator module and a module to encrypt and decrypt
the data transferred as packet payloads. It oversees the
entire encrypted dynamic port knocking and challenge-
response host identity verification mechanism in our

solution. It can also insert or delete flow rules from the
Match-Action table at the P4 switches.

2) P4 switch: The controller leverages the programmability
of the switch to provide access control in our solution
by issuing Match-Action rules to it to forward or drop
packets.

3) Hosts: The hosts are edge devices that have access to a
public key repository module and can encrypt or decrypt
packet payloads and digitally sign them using the RSA
algorithm.

B. Phase 1: Encrypted Dynamic Port Knocking Based Host
Authentication

1) Initial communication from a new host: When a host
tries to send a packet to another host in the network, the
packet is forwarded through the P4 switch. Forwarding is
only possible when there exists appropriate packet forwarding
flow rules in the Match-Action tables of the switch. However,
when a new host tries to communicate via the switch, there
are no existing flow rules for this host in the Match-Action

280

tables. In such a scenario, we forward the packet to the
controller. Upon receiving the forwarded packet of a new
host, the controller first checks its memory for existing port
knocking rules for this host. If there are no such rules for
the host, the controller generates a random port knocking
sequence consisting of three ports e.g 1111, 2222, 3333. This is
followed by the generation of three separate TCP SYN packets,
each containing the encrypted port knocking sequences as the
payloads. RSA encryption algorithm is used to encrypt the
port knocking sequences using the public key of the host.
These packets are then sent to the host. The host decrypts
the port knocking sequence using its own private key. This
step is shown in Fig. 2 (a).

2) Encrypted dynamic port knocking: To perform en-
crypted port knocking, a host is required to send three separate
TCP SYN packets with each of the port knocking sequences,
encrypted using the controller’s public key as the payload.
These packets are decrypted and the sequence is verified at the
controller. If the correct sequence is sent, phase 2 is initiated.
Else the host is quarantined. This process is explained in
Algorithm 1 and also shown in Fig. 2 (b). Post completion of
the first level authentication of a host using encrypted dynamic
port knocking, the second level authentication of the host’s
identity using the challenge-response mechanism is initiated.

Algorithm 1: Encrypted Dynamic Port Knocking
Input: Host IP address: ip, Knock Sequence Counter:

seq count = 0, Controller private key: K
procedure PortKnock(pkt in):
Receive packet at switch
At switch:
Do table lookup on present table
if match is not found then

Send packet to controller via get digest action
At controller:
if seq count < 3 then

get knock sequence list H seq of that ip from
memory

Decrypt packet payload using K as decrypted
sequence seq

if seq == H seq[seq count] then
continue

end
else

Install drop rules for ip
end
if seq count == 3: then

challenge response mechanism()
end

end
end
else

Quarantine the host
end

C. Phase 2: Challenge-Response Host Identity Verification

An existing challenge with the current literature of port
knocking in SDN environments is the absence of host iden-
tity verification mechanisms, making them vulnerable to IP
spoofing and replay attacks. In our proposed solution, when a
host authenticates itself using encrypted dynamic port knock-
ing, we further verify its identity using a challenge-response
mechanism.

1) Challenge-response mechanism: To verify the authen-
ticity of a host, the controller generates a random 256 bit key
and issues it as a challenge to the host. This key is encrypted
with the public key of the host and communicated to it as
the payload of a TCP SYN packet. The host is now required
to send a packet as a response to the last destination port
of the port knocking sequence. This packet must contain the
256 bit key, encrypted using the controller’s public key and
digitally signed by the host in its payload. These conditions
require the host to decrypt the key using its own private key
and further use it to perform the RSA digital signature. If
the host is authentic and has the correct private key in its
possession, the response will have a genuine digital signature
and contain the correct 256 bit key. Else, the host will fail to
reply with a packet meeting the set criteria and would in turn
be classified as a malicious host. This step is shown in Fig. 2
(c) and explained in Algorithm 2.

2) Enforcing access control: Upon conclusion of the two
level authentication process of the proposed P4-sKnock, access
control is enforced. A new flow rule is inserted in the P4
switch. For an authenticated host, the flow rule inserted is a
forwarding rule allowing the communication between this new
host and its desired host in the network. However, upon failing
to authenticate itself the host is quarantined and the controller
inserts drop rules for it. Any further packets sent by this host
are dropped at the P4 switch. This step is shown in Fig. 2 (d).

IV. IMPLEMENTATION AND RESULT ANALYSIS

A. Testing Environment

For implementation and demonstration of the solution,
mininet has been used to develop the topology. The test-
ing topology consists of eight hosts and two switches. The
switches are of type BMV2 and execute the P4 program. All
the hosts and switches are linked as illustrated in Fig. 3. Host
h2 is assumed to be an external host trying to communicate
to an already authenticated host h4. Host h5 is used as the
controller. To craft packets Scapy [15] is used at the hosts and
the controller. A Privacy Enhanced Mail (PEM) file containing
the public keys of all the entities in the network has been
maintained and is accessible by all the hosts and the controller,
representing a public key repository.

B. Initial Communication From an Unauthenticated Host

For our use case, we have kept host h2 as an unauthenticated
host. Since h2 is unauthenticated, any packet it sends to another
host in the network is dropped. Fig. 4 (a) shows that the packet
from h2 to an internal host h4 never reaches it. The P4 switch

281

Algorithm 2: challenge response mechanism()
Input: Controller public key: C pk, Controller private

key: C prk, Host public key: H pk, Host
private key: H prk

At controller:
Generate random 256-bit key: k
Message Msg c = Encrypt(k, H pk)
Send Msg c to host
At host:
Decypted message Msg h = Decrypt(Msg c, H prk)
Response Res = Digital Sign(Encrypt(Msg h, C pk))
Send Res to controller
At controller:
Verify digital signature and decrypt response from

host, Res h = Decrypt(Res, C prk)
if Res h == k then

Install flow rules for the host
end
else

Install drop rules for the host
end

h1
10.0.1.1

h2
10.0.1.2 (Unauthorised Host)

h3
10.0.1.3

h4
10.0.1.4

Switch s1

h5
(Controller)

Switch s2

Switch s3

h6
10.0.1.6

Switch s4

h7
10.0.1.7

h8
10.0.1.8

Fig. 3: Topology used for P4-sKnock

instead pushes the packet header to the controller and drops
the packet. Once the controller receives the packet header, it
processes the header and determines that h2 is a new external
host. The controller then installs appropriate rerouting rules for
it as shown in Fig. 4 (b). Now, any future packets sent by h2 to
an internal host are rerouted to the controller, preventing this
unauthorized host from communicating with any other host.

C. Encrypted Dynamic Port Knocking

Once the controller obtains the packet header from h2,
it obtains its source and destination IPs. Next, it assigns
a randomly generated port knock sequence for the device
of the source IP: h2 to communicate to the device of the
destination IP: h4. This port knock sequence is further RSA
encrypted using the public key of h2 and sent to it as shown
in Fig. 5 (a). Encrypting the port knocking sequence over the
communication channel ensures that even if the sequence is
intercepted by MITM attackers, it cannot be exposed without
the attackers knowing the private key of h2. Host h2 decrypts

table_add ipv4_lpm ipv4_forward 10.0.1.5/32 10.0.1.1 => 00:00:0a:00:01:05 5
table_add ipv4_lpm ipv4_forward 10.0.1.5/32 10.0.1.2 => 00:00:0a:00:01:05 5
table_add ipv4_lpm ipv4_forward 10.0.1.5/32 10.0.1.4 => 00:00:0a:00:01:05 5

table_add ipv4_lpm ipv4_forward 10.0.1.3/32 10.0.1.2 => 00:00:0a:00:01:05 5

(a)

(b)
Fig. 4: Initial communication from h2 (a) packet from h2 to h4 is
dropped (b) rules for rerouting packet from h2 to h5

the payload of the received packets using its private key and
obtains the port knocking sequence. Now, to perform encrypted
dynamic port knocking, h2 generates three packets with each
of the port knock sequences RSA encrypted with the public key
of the controller as the payload. These packets are sent to the
controller sequentially as shown in Fig. 5 (b). The controller
receives and decrypts the encrypted payloads using its private
key and verifies the port knocking sequence as seen in Fig.
5 (c). If any mismatch is found in the sequence or if any
packet’s payload fails to decrypt, the controller installs drop
rules for host h2 to quarantine it. Else, the challenge-response
mechanism is initiated to verify the identity of h2.

(a)

(b)

(c)
Fig. 5: Initial communication from h2 (a) Encrypting the port knock
sequence and sending to h2 (b) sending encrypted sequence from h2
(c) controller verifies the decrypted sequence

D. Challenge-Response Host Identity Verification

Once the port knocking sequence is verified by the con-
troller, identity of h2 is needed to be verified. For this, the
controller first generates a random 256 bit key which is RSA
encrypted using the public key of h2. This key is the challenge
which is sent to h2. Host h2 is required to respond to this

282

challenge by sending the same key, encrypted with the public
key of the controller after digitally signing it to the last server
port in the port knocking sequence. To achieve this, host h2 is
required to decrypt the challenge key from the controller using
its own private key as well as know the terminal server port
of the decrypted port knocking sequence. Upon receiving the
response, the controller verifies the digital signature as well as
the key in the payload. If the correct response is received as a
reply, the controller considers h2’s identity verified as shown
in Fig. 6.

Fig. 6: Sending challenge to h2 and verifying the response
E. Access Control Mechanism and Latency Analysis

Once h2 passes both the phases, the controller installs
forwarding rules for that host in the switch. Host h2 is thus
authenticated and is able to communicate to the desired host
in the network. The combination of both phases provides an
end-to-end authentication and access control mechanism for
SDN. However, for the solution to be feasible it must verify
the authenticity of the host in a real time. To investigate the
practicality of the proposed solution in an SDN environment,
the latency of the solution is analysed which shows that the
solution is able to allow, quarantine or deny communications
from new hosts within an average of 500 ms. Fig. 7 (a) shows
a new host being denied from communicating in the network
post failing authentication. Fig. 7 (b) shows a new host being
allowed to communicate in the network with the desired host
after being successfully authenticated.

Controller Response
--- Challenge Issued
--- Response Analysed

Time (ms)

(a)

(b)

Pa
ck

et
s s

en
t b

y
ho

st

Fig. 7: Latency analysis (a) A malicious host is denied communication
(b) A genuine host is allowed to communicate to the desired host

V. CONCLUSION AND FUTURE WORK

This paper proposes a P4 based two level host authentication
and access control mechanism in SDN environments and

overcomes the highlighted vulnerabilities of existing imple-
mentations of port knocking in SDN environments. It se-
cures the communication of port knocking sequences over
compromised channels and further verifies the identity of
hosts using a challenge-response mechanism providing 2 level
security. P4-sKnock thus provides a secure and robust network
security solution against Man in the Middle attacks in SDN
environments. Currently, the solution is only implemented and
tested in a virtual network with a limited number of hosts
and switches. This work can be extended with real hardware
implementation and testing for use in SDNs.

REFERENCES

[1] G. P. Tank, A. Dixit, A. Vellanki, and D. Annapurna, “Software-Defined
Networking-The New Norm for Networks,” in 3rd National Conference
on Recent Innovations in Science and Engineering, 2012.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling
Innovation in Campus Networks,” SIGCOMM Comput. Commun.
Rev., vol. 38, no. 2, p. 69–74, mar 2008. [Online]. Available:
https://doi.org/10.1145/1355734.1355746

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese,
and D. Walker, “P4: Programming Protocol-Independent Packet
Processors,” vol. 44, no. 3, p. 87–95, jul 2014. [Online]. Available:
https://doi.org/10.1145/2656877.2656890

[4] A. Feghali, R. Kilany, and M. Chamoun, “SDN security problems
and solutions analysis,” in 2015 International Conference on Protocol
Engineering (ICPE) and International Conference on New Technologies
of Distributed Systems (NTDS), 2015, pp. 1–5.

[5] M. B. Jiménez, D. Fernández, J. E. Rivadeneira, L. Bellido, and
A. Cárdenas, “A Survey of the Main Security Issues and Solutions for
the SDN Architecture,” IEEE Access, vol. 9, pp. 122 016–122 038, 2021.

[6] A. Al Hayajneh, M. Z. A. Bhuiyan, and I. McAndrew, “Improving
Internet of Things (IoT) Security with Software-Defined Networking
(SDN),” Computers, vol. 9, no. 1, 2020. [Online]. Available:
https://www.mdpi.com/2073-431X/9/1/8

[7] A. Danping, M. Pourzandi, S. Scott-Hayward, H. Song, M. Winandy,
and D. Zhang, “Threat Analysis for the SDN Architecture,”
https://www.opennetworking.org/, July 2016.

[8] J. Cao, Y. Liu, Y. Zhou, C. Sun, Y. Wang, and J. Bi, “CoFilter: A
High-Performance Switch-Accelerated Stateful Packet Filter for Bare-
Metal Servers,” in 2019 28th International Conference on Computer
Communication and Networks (ICCCN), 2019, pp. 1–9.

[9] M. Krzywinski, “Port Knocking,” https://www.linuxjournal.com/article/6811,
[Online; accessed 25-March-2022].

[10] E. O. Zaballa, D. Franco, Z. Zhou, and M. S. Berger, “P4Knocking:
Offloading host-based firewall functionalities to the network,” in 2020
23rd Conference on Innovation in Clouds, Internet and Networks and
Workshops (ICIN), 2020, pp. 7–12.

[11] A. Almaini, A. Al-Dubai, I. Romdhani, M. Schramm, and A. Alsarhan,
“Lightweight edge authentication for software defined networks,” in
Computing, vol. 102, no. 2, 2021, pp. 291–311.

[12] A. Almaini, A. Al-Dubai, I. Romdhani, and M. Schramm, “Delegation
of Authentication to the Data Plane in Software-Defined Networks,” in
2019 IEEE International Conferences on Ubiquitous Computing Com-
munications (IUCC) and Data Science and Computational Intelligence
(DSCI) and Smart Computing, Networking and Services (SmartCNS),
2019, pp. 58–65.

[13] F. von Eye, M. Grabatin, and W. Hommel, “Detecting Stealthy
Backdoors and Port Knocking Sequences through Flow Analysis,” PIK
- Praxis der Informationsverarbeitung und Kommunikation, vol. 38, no.
3-4, pp. 97–104, 2015. [Online]. Available: https://doi.org/10.1515/pik-
2015-0011

[14] A. Saxena, R. Muttreja, S. Upadhyay, K. S. Kumar, and D. V. U,
“P4Filter: A two level defensive mechanism against attacks in SDN
using P4,” 2022. [Online]. Available: https://arxiv.org/abs/2205.12816

[15] P. Biondi, “Scapy,” http://www.secdev.org/projects/scapy, [Online; ac-
cessed 25-March-2022].

283

