978-1-6654-9927-9/22/$31.00 ©2022 IEEE

KID: Knowledge Graph-Enabled Intent-Driven
Network with Digital Twin

Xiaotian Chang'!, Chungang Yang', Hao Wang?, Ying Ouyang', Ru Dong', Junjie Guo', Zeyang Ji', Xianglin Liu®
IThe State Key Laboratory on Integrated Services Networks, Xidian University, Xi’an, China.
(emails: henucxt@163.com; chgyang2010@ 163.com; yingouyang224@ 163.com; 18302999373@163.com;
peterguo97@163.com; jzy15835274090@ 163.com; 1x108080627 @ 163.com)
254th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang, China.(email:632606089 @qq.com)

Abstract—To meet novel services and networking requirements
towards the next generation applications, intent-driven network is
proposed as a promising networking paradigm. It is with capabil-
ities of intent refinement, policy generation, and state awareness.
And these distinctive capabilities contribute to its wide applications
to the next generation networks. However, current researches
lack a generalization model of intent refinement. Additionally, it
is difficult to extract available knowledge from huge raw data
of the network status, and guarantee the precise generation of
network policies. To solve these challenges, we present a knowledge
graph-enabled intent-driven network with the digital twin, which
is termed as KID in this work. In the KID, knowledge graph
is utilized to represent user intents, abstract network status, and
express network policies. And the digital twin is applied to validate
intents as well as abstract the physical network. The KID enhances
the capabilities of intent-driven networks to refine intents, con-
tributing to the continuous assurance of accurate intent fulfillment.
Finally, we present a proof of concept implementation of the KID.
Simulation results verify the feasibility and effectiveness of the
presented KID framework.

Index Terms—Digital twin, intent-driven network, knowledge
graph

I. INTRODUCTION

It is vital for the next generation networks to provide cus-
tomers with richer and more distinctive services. Therefore, how
to best fulfill user requirements and implement relevant network
services is a worthwhile research direction. To overcome the
issues that the next generation networks face in terms of
novel services and networking requirements, a novel networking
paradigm called intent-driven network (IDN) is proposed. The
IDN, which is also named as intent-based network, is a promis-
ingly programmable and customizable automation network that
can extract user intents, perceive network status, and optimize
network configuration in real-time. It allows users to declare
intents through high-level abstraction policies. Therefore, users
can declaratively express the desired network status, without
concerning with the specifications of refining high-level abstract
policies into a low-level programming language [1]. In the
IDN, the desired network status can be achieved automatically
through intent refinement, verification, configuration, and opti-
mization according to the declarative user intents.

The National Key Research and Development Program of China (2020YF-
B1807700).

272

Intent translation, as a key component of intent refinement
[2], primarily focuses on converting user intents into network
parameters. There are two typical forms of intent input: the
natural language input [3]-[5] and the network parameter in-
put [6], [7]. Intent translation is beneficial to transform user
intents into network policies that can be recognized by the
computer. However, intents may come from different users,
applications, or from the underlying network status. In the
face of various intents, current intent translation methods are
difficult to extract comprehensive user intent information and
only work well in a static and pre-designed model. Besides,
it is hard to merge the gap between the expected intents and
the network configuration due to various intent forms. As a
result, a generic intent translation method is urgently needed
to address these shortcomings. Additionally, another challenge
that the IDN is currently working on is how to handle the
huge raw data of the network status. The presence of a large
amount of data from the underlying network has a significant
impact on the efficiency and accuracy of intent translation and
policy generation. Meanwhile, it is difficult for current network
systems to extract knowledge from the huge raw data, and
perceive the network status. Furthermore, the process of policy
generation lacks the capability to reasoning based on the user
intents and the network status. This is another issue that should
be well treated with for the IDN. In summary, the major novel
technical challenges are as follows:

o Intent: Due to different intent sources and diverse kinds
of intents, current intent refinement models are difficult to
integrate and merge different intents from various applica-
tion scenarios. A generalization model of intent refinement
is required to deal with various intents.

o State: A large amount of raw data is generated in the
underlying physical network during the information inter-
action. Current IDNs call for a method that can extract
useful knowledge from huge network status information.

o Policy: It is necessary for policy generation to consider
both user intents and constraints of the underlying re-
sources. However, many IDN systems generate policies
through simple mapping in the policy repository. Obvi-
ously, this cannot guarantee the completeness or accuracy

APCC 2022

of policy generation, in particular, when the intent may be
changed with the dynamic network status.

With the advancement of knowledge graph (KG) technology,
several researchers have tried to explore and exploit KG into
IDNs [8]. The KG is a graph-based data structure consisting of
nodes and edges. A node represents an "entity", and an edge
represents a "relationship" among the entities. It models and
describes the data using more standardized conceptual models,
such as property graphs [9] and resource description frame-
work (RDF) graphs [10]. Additionally, reasoning is another
characteristic of the KG and it helps discover the hidden or
indirect associations among the data. Furthermore, the KG has
a standardized and common construction process [11]. These
advantages of the KG contribute to solving the problems that
IDNs are currently facing to. Thus, researchers are presenting
methods for intent representation based on the KG to address the
issues associated with intent input. For example, in the INDIRA
architecture [3] and the EVIAN system [12], researchers both
map the intents to RDF graphs to represent user intents.

To promote the abstraction of the underlying network, we
present a digital twin-based approach for dealing with the mas-
sive amount of data generated by the underlying network. The
digital twin creates digital models of physical network entities
and simulates their behavior in the real environment with the
support of data. The stability and operational efficiency of the
network system are enhanced through virtual-real interaction
and data analysis [13]. In our work, a digital twin-like network
scenario is presented by the KG technology. Using the KG
construction technology, the knowledge can be extracted from
the status information of the physical network to create a KG
that we refer to as the network state knowledge graph (NSKG).
The NSKG is capable of dynamically updating the attribute
information of nodes and relations to reflect changes in network
status. In this way, it realizes the abstraction of the physical
network. And in IDNs, the digital twin layer, constructed on the
basis of the KG, can be used to abstract the physical network
and facilitate verification of intents.

In our work, we present a KG-enabled IDN with the digital
twin, which is termed as KID. It constructs the intent knowledge
graph (IKG) and NSKG. During the interaction of both KGs,
the balance between user intents expressed by the IKG and
network resource capacities expressed by the NSKG is achieved.
Finally, network policies expressed by the KG are automatically
generated through this process. They are then sent to the
underlying network after the digital twin layer verifies their
feasibility. Our novel contributions are summarized as follows:

e We present an IDN framework named the KID, aiming
to merge the semantic gap between user intents, policy
generation, and the underlying network.

« We develop an intent language specification and a generic
intent refinement model. Additionally, an intelligent trans-
lation technique is designed to achieve intelligent intent
translation which takes user intents into consideration as
well as network status.

o Finally, we provide a use case of the presented KID

framework to demonstrate the feasibility and effectiveness
of the proposed scheme.

The remainder of this work is organized as follows. In Section
II, we present an introduction to the KID framework. Following
that, we present the key components of the KID in Section III.
Then, the experimental use case and results are provided in
Section IV. Finally, in Section V, we summarize our work.

II. KID: KNOWLEDGE GRAPH-ENABLED INTENT-DRIVEN
NETWORK WITH DIGITAL TWIN

Current IDN systems are difficult to ensure accurate under-
standing of user intents, precise generation of network policies,
and fine extraction of network status. To meet novel services
and networking requirements towards the next generation ap-
plications, we present an IDN system based on the KG and
the digital twin, as shown in Fig. 1. And it is divided into the
application layer, intent layer, digital twin layer, and physical
network layer. Upper layer intents and the underlying network
status are connected by the KG. From the top-down, the KG
completes the parsing and representation of intents. Meanwhile,
from the bottom up, the KG abstracts the underlying network
resources and understands the resource capabilities provided by
the underlying network. And during the reasoning process, the
intent requirements are matched to the capabilities of underly-
ing resources. Finally, the KG-expressed network policies are
formed. And they are validated via the digital twin layer to
instruct the physical network in carrying out the intents.

‘ ‘ User/Application Intent Input ‘ ‘

Graph
Construction
T

v

Intent Knowledge Graph 5 ;

A
| Intent
Requirements ¢

J9ke
uopedddy

Knowledge
Extraction

Intent

Specification Data Processing

JoAery Judjuf

% Enrich
|_Graph

Intent Expansion

Data
| Support

Network State Knowledge Graph m

* Provide Data?
X
‘ I
f 1
Abstract
Network I Collect Data I l

Ac
Parameters

Parameter
Mapping
Data
Support |

Network 4
Capabilities |

sapiod Asnpa

‘ J9keT wIM L, [ensiq

REYN g |
WAOMIIN [8ISAYJ

Physical Network

Fig. 1: The architecture of the KID.

A. Application Layer

The user or application intent input module is designed at the
application layer. It is primarily aimed at providing interfaces
to the users and applications. Meanwhile, this module enables

273

various sources and types of intent data to be entered into
the system through front-end interface. It also allows users to
declare their intents via text or voice. Then the intent data is
sent to the data pre-processing module in the intent layer.

B. Intent Layer

The intent layer is responsible for completing the process
of intent translation and policy generation. It is composed
of the following modules: data processing, knowledge extrac-
tion, intent specification, graph construction, intent expansion,
parameter mapping, and feasibility verification. At the intent
layer, the workflow of the modules is approximately as follows:
(1) To guarantee the data quality, the data processing module
cleans and integrates the information of original intents. (2)
The knowledge extraction module uses the algorithm model to
perform entity recognition and relationship extraction on the
pre-processed intent data. Then the triple data "entity-relation-
entity" is generated. This intent triple data is referred to as the
intent knowledge in this article. (3) The intent specification
module standardizes the names of entities and relations in
the constructed intent knowledge. (4) Using the normalized
intent knowledge, the graph construction module creates a KG
and saves it to the graph database. (5) To realize the intent
expansion, the intent expansion module adds corresponding
conditions and attribute information to the intent entities. (6)
The parameter mapping module adds network parameter in-
formation to the intent entities, relations, and attributes in the
IKG. (7) Feasibility verification module verifies the feasibility
of intent execution according to the constraints of the underlying
resources. It contributes to the ability of the IDN to adapt to
the network autonomously.

C. Digital Twin Layer

The purpose of the digital twin layer is to abstract the physical
network and to evaluate the feasibility of the intent execution.
In our work, the NSKG and the open network operating system
(ONOS) are used to construct a fundamental digital twin layer.
The digital twin layer abstracts the physical network to ensure
that the physical network can be accurately depicted by the KG.
Additionally, it provides data support for the process of intent
refinement in the intent layer. Furthermore, once the user intents
are verified at the digital twin layer, the ONOS will instruct the
physical network layer to execute the network policies which
are from the intent layer.

D. Physical Network Layer

The physical network layer is a real-world network envi-
ronment. It is composed primarily of the physical entities that
comprise the end-to-end network, such as terminals, switches,
routers, and other network element devices.

III. DETAILED SCHEME DESIGN FOR THE KID

In this section, we introduce the process of intent refinement
by the KG first. Then, a digital twin scenario constructed based
on the NSKG is presented to abstract the underlying network
and verify the feasibility of the intent execution. Finally, we
describe the process of network policy generation.

A. Intent

Considering the characteristics of the KG technology itself,
we design a generic intent refinement model on the basis of the
KG. Specifically, its working mechanism is as follows:

At first, the system pre-processes the intent data after receiv-
ing it. The program reads the data of intent input and loads
it into memory. Following that, the regular matching rules are
invoked to eliminate special symbols. Finally, the cleaned and
filtered intent data is stored in the file.

Following data pre-processing, the intent data is sent into
knowledge extraction model, which adopts the joint extrac-
tion method of subject model and object model based on
Bi-directional Long Short-Term Memory. By fine-tuning the
BERT [14] model, the subject model generates subject entities.
Additionally, the object model predicts the corresponding object
entities and relations based on the output subject entities. At
the last layer of the subject and object models, the sigmoid
activation function is used to predict multiple subject entities
[15]. Finally, the knowledge extraction module generates intent
triple data, which is referred to as intent knowledge. In training
the knowledge extraction model, we borrowed the approach in
[15]. Meanwhile, we reconstructed our own dataset according to
the application scenario and trained the model through PyTorch.
The basic form of the input data for the training is "xxx, from
XXX to Xxx, the time requirement is from xxx to xxx."

Due to the possibility that the extracted intent knowledge
may contain non-standard and ambiguous words, it is neces-
sary to normalize the intent knowledge. Therefore, we design
intent grammar rules based on the extended backus-naur form
[16]. Intent grammar rules normalize the names of entities
and relations in the intent knowledge. For example, we s-
tandardize "time" and "endpoint" by designing the follow-
ing grammar rules: "<Start-Time>::= *start*<Qualifier]><Point-
in-Time> <End-Time>::= *end*<Qualifier2><Point-in-Time>",
"<Endpoint>::= <At_Where>I<Route-Where> <At_Where>::=
at<Location> <Source>::= "from"<Location> <Destina-
tion>::= "to"<Location>". The grammar design for other en-
tities and relations is similar. This standard paradigm of intent
language specification improves the generality and effectiveness
of the paradigm.

Then, Py2neo constructs the IKG using the intent knowledge.
And the graph database Neo4j is used to store the IKG. Py2neo
is a client library and toolkit for working with Neo4j from
within Python applications and from the command line [17].

To improve the accuracy in representing intents, the initial
IKG must be extended. As a result of intent expansion, the
corresponding conditions and attributes are added to the intent
entities. For instance, if the user types "establish a reassurance-
level voice service from A to B", the phrase "reassurance-level
voice service" will be parsed. The necessary requirements for
"reassurance-level voice service", such as delay, bandwidth, and
other parameters, are added. It’s worth noting that the intent
expansion module will expand the IKG in accordance with the
information from the digital twin layer.

After realizing the expansion of the IKG, the system will

274

perform parameter mapping. Since the network parameter in-
formation is stored in the NSKG at the digital twin layer,
the system will add the parameters to the intent knowledge
based on the information in the NSKG. Firstly, the system
parses the entities and relations in the IKG. Then, the system
queries whether the names of these entities and relations are
contained in the NSKG. When a consistent entity or relation
name is matched in the NSKG, the system updates the IKG
with the network parameter information that corresponds to
these entity or relation names in the NSKG. Eventually, the
network parameter data is added to the corresponding entities
and relations in the IKG in the form of attributes.

So far, we have obtained the IKG containing detailed network
parameter information. Following that, the feasibility verifica-
tion module verifies the feasibility of intent execution. And
during the process of feasibility verification, the system modifies
the IKG according to the resource capabilities provided by the
underlying network. Finally, network policies expressed by the
KG can be formed and recorded in the IKG.

B. State

In combination with the ONOS, we construct the digital twin
layer to abstract the physical network and verify the feasibility
of intent execution.

At first, the system collects data from the physical network
layer, such as network element entity data, resource data, log,
protocol, routing, and status data, through real-time or non-
real-time methods. Meanwhile, the ONOS can also obtain the
physical network status information through relevant measure-
ment means. After that, the collected data is processed and
stored in the database. The system reads data from the database,
and constructs the NSKG using the KG construction technique.
Then, the system dynamically updates the attributes of nodes
and relations in the NSKG based on the indicator data collected
in real-time. This method reflects the changes of network status
and achieves the purpose of abstracting the physical network.

(a) The network topology.

(b) The diagram of route planning.

Fig. 2: The network topology.

Additionally, the digital twin layer supports the feasibility
verification of intents during the intent refinement process. For
example, according to the network topology shown in Fig.
2(a), the intent is identified and parsed to determine that the
required minimum bandwidth resource between source node h4
and destination node h3 is 7. By default, the system executes
the intent via the route sl -> s2 -> s3. According to the NSKG,
the default route’s available minimum bandwidth is 5, which
cannot meet the intent requirements. Therefore, it is necessary
to find suitable paths for intent that can guarantee its execution.

The planned route is s1 -> s4 -> s2 -> s3, as shown in Fig. 2(b).
If there is no suitable path can be found based on the NSKG,
this intent is deemed unsuitable for execution by the underlying
network, and the result is fed back to the user.

C. Policy

We implement policy generation with the support of the KG
during the interaction process between the IKG and the NSKG.
In this way, we merge the semantic gap between user intents,
policy management and network status.

Represent

Intent
e) &)))) o
Record Intent
Policy Deconstruction
Ability
Matching
Band
sate (i) (M) () o) ()) oo
Depict

state

Network
policies

Fig. 3: The diagram of the interaction between the IKG and
the NSKG.

The diagram of the interaction between the IKG and the
NSKG is shown in Fig. 3. The system gradually implements
intent expansion, parameter mapping, and intent verification
through interaction between both KGs. It is in these processes
that network policies are gradually formed. After implementing
the parameter mapping, the system parses the IKG to understand
the requirements of user intents. These intent requirements are
expressed in terms of parameter information such as band-
width, delay, and packet loss rate. Additionally, the NSKG is
parsed to understand the resource capabilities provided by the
underlying network. The network topology information in the
NSKG is traversed by the system. Thus, the link connectivity
of the network topology and link parameter information can
be obtained. Then, by calculation, the links that can meet the
intent requirements for bandwidth, delay, and packet loss rate
are determined. Furthermore, all feasible paths are stored in
the IKG. Throughout the process, the system completes the
adaptation between the intent requirements and the capacity
of the underlying network resources, and the feasibility of
the intents is verified. Once all intents have been verified,
network policies expressed by the KG are also formed. So
far, the KID system completes the whole process of intent
representation, policy recording, and network depiction, and
realizes the knowledge-driven IDN through the KG.

IV. EXPERIMENTAL IMPLEMENTATION AND RESULTS

In this section, we implement a use case to demonstrate the
feasibility and effectiveness of the proposed solution. Through
the use case, we illustrate how the KID works. At last, the
performance of the KID is evaluated by simulation experiments.

A. Experimental Implementation

We input the intent as "Transmit an important video service
from Xian user A to Beijing user B, the time requirement
is from 10:30 on June 5, 2020, to 12:30 on June 5, 2020".

275

Meanwhile, multiple intents can be entered concurrently. The
intent text is sent as an HTTP request to the system backend for
data processing. Then, entity recognition and relation extraction
are performed on the preprocessed data using the knowledge
extraction model. The knowledge extraction model outputs
triple data, which is saved in a file in JSON format. Based on the
intent grammar rules, the triple data is normalized. Following
that, Py2neo imports the triple data into Neo4j to create an IKG.
During the data import process, the system detects the presence
of intent entities that can be expanded based on the information
contained in the NSKG.

In this use case, the entity "video service" has two conditions
in the NSKG: "bandwidth" and "delay", with default attribute
values. Therefore, when the intent knowledge is imported
into Neo4j, the system appends corresponding conditions to
the "video service". Meanwhile, the attribute values of both
conditions are updated into the IKG. When the system detects
that there is no intent entity can be expanded according to the
NSKG, the intent expansion is completed.

(a) The process of updating parameters from
the NSKG to the IKG.

(b) The final IKG displayed in the Neo4;.

Fig. 4: The process of forming the IKG.

Following the intent expansion, the parameter mapping is
performed. When the system reads the intent entity "Beijing
user B" and queries the node "Beijing user B" in the NSKG, it
updates the attribute values of the node, such as IP address
10.0.0.4 and port number 1257, to the node "Beijing user
B" in the IKG. Furthermore, similar steps are repeated until
corresponding network parameters is added for all intent entities
and relations. The process of updating parameter information
from the NSKG to the IKG is illustrated in Fig. 4(a). And a
view of the final IKG in Neo4;j is shown in Fig. 4(b).

After successfully verifying the feasibility of intents, the
system performs calculations using the NSKG to determine the
forwarding paths of executable intents. As part of the network
policies, all feasible paths are saved in Neo4;.

Additionally, we develop an ONOS-based routing algorithm
application. When the ONOS receives the network policies,
this routing algorithm application is able to calculate the intent
satisfaction values of all feasible paths using the remaining
bandwidth, delay, and packet loss rate collected by the system.
And the optimal path is selected from feasible paths according
to intent satisfaction values.

Finally, network policies based on the expression of the KG
will be sent to the ONOS in the JSON format. Then, the ONOS
starts the designed route planning application. It instructs the
physical network to execute intents in accordance with the
network policies that it has received.

E) S) ONOS Summary
. s1 [s / £3 0988 | ion ,
"" ." e
\I“ / I\‘ Hosts :
[| Topology SCCs :
7_ ———— Intents:
54 s5 6 Flows :

Fig. 5: Intent assurance for end-to-end routing.

B. Analysis of Results

We create two virtual machines based on Ubuntu 16.04
system. One is used to run the KG-based intent translation
system. And the other is used to build the network simulation
environment and construct the NSKG.

At first, the assurance of the KID for end-to-end communi-
cation intent is tested. In our work, we use Mininet to create a
network simulation environment with the same topology as that
shown in Fig. 2. When the ONOS detects a link failure via the
link subsystem, the system automatically determines a new path
and quickly repairs the connection to maintain the end-to-end
communication intent.

Fig. 5 shows the network topology diagram displayed in
the ONOS control interface. It illustrates how the KID ensures
end-to-end intent. Initially, the path between h1(10.0.0.1) and
h4(10.0.0.4) is s1->s2->s3. When the link between sl and s2
in the topology fails, the system can quickly reelect a new
communication path and recover from the failure.

Then, the duration of the whole intent refinement process is
tested. The measurement is performed over 200 iterations. In
each iteration, a random intent is selected from a specific intent
group. Through knowledge extraction, parameter mapping, and
other processes, the duration required to complete intent refine-
ment is determined. Finally, statistical mean values are calcu-
lated and bar charts are plotted. Meanwhile, we use the same
method to test the time consumed by intent refinement toolkit
(IRTK) [18] during the intent refinement. Eventually, a graph is
obtained that compares the duration of intent refinement using
the KID and the IRTK.

Fig. 6(a) shows the average duration of intent refinement.
In the front-end interface of the system, 10, 50, 100, 150
and 200 user intents are input respectively. When the number
of processed intents is 10, the KID takes about 5.68 ms. It

276

mKID mIRTK
300

N
@\
S

~
=3
S

o
15}

Mean duration(ms)
o
3]

w
S

o

10 50 100 150 200

Number of intents

(a) The average duration of intent refinement.

—e—Shortest path algorithm KG-based path algorithm

50

N w N
] S S

Packet loss rate(%)

=)

0 5 10 15 20 25 30 35 40 45 50 55

Time(s)

(b) Link packet loss rate over time.

Fig. 6: The performance of the presented KID.

clearly shows that the KID takes significantly less time than
the IRTK during intent refinement for the same number of
intents. Furthermore, as the number of intents increases, the
total duration of refinement increases roughly linearly.

Finally, the physical performance of the KID is evaluated
in terms of ensuring video service. We use the video lan
client to simulate end-to-end video transmission in Mininet.
And the network topology is identical to that shown in Fig. 2.
Additionally, the link’s maximum bandwidth is set to 20M, and
background traffic is pre-injected into the simulation network.
Then, as the intent is issued in the simulation network, the
system plans the path for intent execution. The routers follow
the control path issued by the ONOS when forwarding packets
for end-to-end video streams. Then, in the process of ensuring
video service, iPerf is used to test the size of the link packet loss
rate. Eventually, we compare the performance of the KG-based
path algorithm against the shortest path algorithm in terms of
reducing link packet loss rate in Fig. 6(b).

Fig. 6(b) illustrates the effect of the KG-based path algorithm
and the shortest path algorithm on the packet loss rate links. As
seen in Fig. 6(b), the packet loss rate of links is roughly at a
stable level after the end-to-end video service is established.
When the system forwards packets using the shortest path
algorithm, the link packet loss rate is approximately 45%. The
link packet loss rate is approximately 13% when the system
forwards packets along the paths planned by the KG-based
path algorithm. Clearly, the KID has good physical performance
when it comes to ensuring intent execution.

V. CONCLUSION

To deal with novel services and networking requirements
towards the next generation networks more effectively, we pre-

sented a novel IDN framework named the KID. We developed
an intent translation technique based on the KG that took
into account both user intents and the constraints of network
status. Furthermore, the digital twin layer was used to verify
intents and deliver policies. Finally, we verified the feasibility
and effectiveness of the presented scheme by a use case. Our
research explored and exploited the IDN to solve complex
problems to continuously guarantee intents. And it contributes
to merging the semantic gap between user intents, network
status, and policy generation for knowledge-driven IDNs.

REFERENCES

[1] K. Parker, “Cisco Systems-Intent-Based Networking: Building the bridge
between business and IT.” [Online]. Available: https://securenetworkers.
com/2018/08/31/intent-based-networking/. [Accessed:2022].

[2] Y. Ouyang, C. Yang, Y. Song, X. Mi, and M. Guizani, “A brief survey
and implementation on refinement for intent-driven networking,” IEEE
Network, vol. 35, no. 6, pp. 75-83, 2021.

[3] M. Kiran, E. Pouyoul, A. Mercian, B. Tierney, C. Guok, and I. Monga,
“Enabling intent to configure scientific networks for high performance
demands,” Future Generation Computer Systems, vol. 79, pp. 205-214,
2018.

[4] A.S. Jacobs, R. J. Pfitscher, R. H. Ribeiro, R. A. Ferreira, L. Z. Granville,
W. Willinger, and S. G. Rao, “Hey, lumi! using natural language for
{Intent-Based} network management,” in 2021 USENIX Annual Technical
Conference (USENIX ATC 21), pp. 625-639, 2021.

[5] A. Chaudhari, A. Asthana, A. Kaluskar, D. Gedia, L. Karani, L. Perigo,
R. Gandotra, and S. Gangwar, “Vivonet: Visually-represented, intent-
based, voice-assisted networking,” arXiv preprint arXiv:1904.03228,
2019.

[6] C.Prakash,J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee, C. Clark,
Y. Ma, P. Sharma, and Y. Zhang, “Pga: Using graphs to express and
automatically reconcile network policies,” ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4, pp. 29-42, 2015.

[71 A. Abhashkumar, J.-M. Kang, S. Banerjee, A. Akella, Y. Zhang, and
'W. Wu, “Supporting diverse dynamic intent-based policies using janus,” in
Proceedings of the 13th International Conference on emerging Networking
EXperiments and Technologies, pp. 296-309, 2017.

[8] C. Gutiérrez and J. F. Sequeda, “Knowledge graphs,” Communications of
the ACM, vol. 64, no. 3, pp. 96-104, 2021.

[9]1 R. Angles, H. Thakkar, and D. Tomaszuk, “Rdf and property graphs

interoperability: Status and issues.,” AMW, vol. 2369, 2019.

“Rdf - Semantic Web Standards.” [Online]. Available: https://www.w3.

org/RDF/. [Accessed:2022].

F. Li, W. Xie, X. Wang, and Z. Fan, “Research on optimization of knowl-

edge graph construction flow chart,” in 2020 IEEE 9th Joint International

Information Technology and Artificial Intelligence Conference (ITAIC),

vol. 9, pp. 1386-1390, 2020.

H. Mahtout, M. Kiran, A. Mercian, and B. Mohammed, “Using machine

learning for intent-based provisioning in high-speed science networks,” in

Proceedings of the 3rd International Workshop on Systems and Network

Telemetry and Analytics, pp. 27-30, 2020.

Y. Wu, K. Zhang, and Y. Zhang, “Digital twin networks: A survey,” IEEE

Internet of Things Journal, vol. 8, no. 18, pp. 13789-13804, 2021.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training

of deep bidirectional transformers for language understanding,” arXiv

preprint arXiv:1810.04805, 2018.

J. Su, “Hybrid structure of pointer and tagging for relation ex-

traction: A baseline” [Online]. Available: https://github.com/bojone/

kg-2019-baseline. [Accessed:2021].

Strumenta, “Ebnf: How to describe the grammar of a language.” [Online].

Available: https://tomassetti.me/ebnf/. [Accessed:2020].

Py2neo, “The py2neo v4 handbook.” [Online]. Available: https://py2neo.

org/v4/#the-py2neo-v4-handbook. [Accessed:2021].

P. Widmer and B. Stiller, Design and Implementation of an Intent-Based

Blockchain Selection Framework. PhD thesis, University of Zurich Zurich,

Switzerland, 2020.

[10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

277

