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Abstract—Mobile edge computing (MEC) has recently become
an enabling technology for mobile operators that are offering a
diverse set of services. These services require extensive storage,
energy, and computation resources. However, user devices (UDs)
have resource constraint to meet the requirements of such ser-
vices. To tackle the contradiction between resource-constrained
UDs and computationally intensive services, MEC have been
proposed. MEC servers provide task execution services for UDs.
On receiving a service request from the UDs, a MEC server
within the network may dynamically allocate computation and
memory resources for the task execution. As the MEC servers
have limited capacity, efficient utilization of MEC resources is
necessitated. Also, it is challenging to find an optimal solution for
efficient resource allocations due to different task requirements
for a diverse set of services offered to users and dynamicity in
wireless networks. To address these problems, we propose a partial
task offloading and resource allocation scheme to maximize user
task completion within a tolerable time period while minimizing
energy consumption. In this paper, we convert the formulated
optimization problem to a markov decision process (MDP) and
then propose a solution based on the deep deterministic policy
gradient (DDPG) algorithm. The performance results show that
the proposed method completes a greater number of tasks within
a tolerable delay and reduces the energy consumption in the
network, compared to those of other conventional schemes.

Index Terms—Deep deterministic policy gradient (DDPG), mo-
bile edge computing (MEC), partial offloading, resource alloca-
tion.

I. INTRODUCTION

W ITH a rapid increase in usage of Internet–of–things
(IoT) devices, the number and types of resource inten-

sive and delay–sensitive mobile applications have grown expo-
nentially. Applications, such as, augmented reality (AR) and
virtual reality (VR), have high demands for memory, compute
power, and energy for successful execution. To alleviate the
resource constraints faced by user devices (UDs), mobile edge
computing (MEC)–based task offloading strategies have been
proposed. The MEC servers are deployed close to user point–
of–attachment, so that UDs can migrate their task to them for
execution [1].

In recent years, MEC resource management has been widely
studied topics [2]. As MEC servers have limited capacity, it is
important to optimize task offloading and resource manage-
ment. In [3], the MEC server processes the data related to
human emotion that is received from the sensors installed on
the IoT devices. To minimize the energy and time consumption
of the MEC server and the sensors, a computation resource allo-
cation algorithm has been introduced. The existing researches
are based on classical optimization methods to find optimal
offloading decisions and resource allocations in single and mul-
tiple user systems [4]. Conventional optimization techniques
may suffer from instability and sub–optimal solutions due to
the dynamic wireless channel, as well as the heterogeneity of
tasks generated by UDs. Therefore, it is challenging to meet
the resource requirements of different types of tasks.

However, learning based solutions can adopt this variation.
In [7], Ren et al. used deep reinforcement learning (DRL) for
dynamic power allocation. However, the delay requirement for
UDs was considered fixed. According to most studies, the user
device’s task-related information such as tolerable delay, data
size, and computation resources (CPU cycles) was considered
fixed [7]. To overcome problems in the previous works, we
propose a partial task offloading and resource allocation tech-
nique that enables multiple user devices (UDs) with varying
data size, computation resources (CPU cycles), and tolerable
delay requirements to offload part of the task to the MEC
server and then compute the remaining portion locally. To
meet the requirements of wireless devices and the dynamic
nature of wireless channels, we convert the formulated problem
using the markov decision process (MDP), and propose a
deep deterministic policy gradient (DDPG)–based algorithm to
maximize the number of tasks completed within a tolerable
time period and minimize the total energy consumption.

The rest of this paper is organized as follows. In Section II,
a system model is presented. Section III provides a detailed
explanation of the DDPG-based task offloading and resource
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Fig. 1. Architecture of the MEC Network

allocation scheme. The Simulation results are presented in
Section IV followed by conclusions in Section V.

II. SYSTEM MODEL

As shown in Fig.1 we consider a network consisting one
base station embedded with a MEC server and n UDs. There
are T time slots, each of σ duration. The UDs generate
service requests, referred to as tasks, at each time slot t,
where t ∈ T = {1, 2, . . . , T}. The task information can be
represented by Ωn,t = {Bn,t, Cn,t, Dn,t}, where Bn,t, Cn,t,
Dn,t are the data size in bits, the required CPU cycle per bit,
and the tolerable delay in ms. We assume that the generated
task can be partitioned in accordance with the offloading ratio
αn,t ∈ [0, 1]. We employ a partial offloading scheme, in
which the MEC server, after receiving a task execution request
from UDs, determines the optimal portion of task αn,t to be
computed at both the UD n and the MEC server. Based on
the offloading decision, the UD migrate αn,tBn,t portion of
their tasks to the MEC server, while (1− αn,t)Bn,t portion is
computed at the UD.

Furthermore, we assume that the system uses orthogonal fre-
quency division multiple access (OFDMA), which eliminates
interference between UDs by allocating separate subchannels.
The UDs can transmit tasks to the base station (embedded with
a MEC server) using

rn,t = ωn,tW log2

(
1 +

pnζn,t
δ2

)
, (1)

where W is the total bandwidth between MEC server and all
UDs, ωn,t ∈ [0, 1] is the fractional bandwidth allocated to the
UD n, ζn,t is the channel gain of UD n, δ is noise power and
pn is the transmit power of UD n.

A. Task execution model

At each time slot t, UDs n generate resource-intensive tasks
represented by Ωn,t. In the partial offloading approach, the
MEC server is capable of computing a portion of the task and
the UDs execute the subsequent portion of the task. In the
following sections, we outline MEC execution and UD local
execution.

1) MEC Execution: If the MEC server decides to execute
αn,t part of UD’s task, UD n offloads that portion via the
allocated bandwidth. The transmission delay and energy con-
sumption can be calculated by

T off
n,t =

αn,tBn,t

rn,t
, (2)

Eoff
n,t = pnT

off
n,t . (3)

The MEC server executes the received task bits using its
computational resources. The MEC server’s task processing
delay can be determined by using

TMEC
n,t =

αn,tBn,tCn,t

( cmN )
, (4)

where cm is the computational resource of the MEC server. The
computational resource is equally shared among all UDs. The
total time consumption of the offloaded task can be calculated
by combining (2) and (4). Thus, we have

Tn,m,t = TMEC
n,t + T off

n,t . (5)

2) Local Computing: The UD executes (1 − αn,t)Bn,t

portion of the task locally. Consequently, the time and energy
consumption related to local execution can be calculated as

T loc
n,t =

(1− αn,t)Bn,tCn,t

cn
, (6)

Eloc
n,t = (1− αn,t)Bn,tCn,t�c

2
n, (7)

where � and cn are the energy consumption coefficient and
computational capacities of each UD, respectively. In partial
offloading, UDs and MEC server execute the task simultane-
ously. Accordingly, the total delay can be calculated as follows

T tot
n,t = max

{
Tn,m,t, T

loc
n,t

}
. (8)

The total energy consumption can be computed using (3) and
(7).

Etot
n,t = Eoff

n,t + Eloc
n,t . (9)

We assume that the data downloaded from the MEC server onto
the UD is small in size and is downloaded quickly. Thus, the
energy and time required to download are therefore not taken
into account [8].

B. Problem Formulation

We propose an efficient task offloading and resource alloca-
tion scheme. We aim to reduce the total energy consumption
while maximizing the number of tasks completed within a tol-
erable time period. Thus, the formulated optimization problem
is derived as
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max
ω,α

T∑
t=1

N∑
n=1

λ1Hn,t − λ2E
tot
n,t (10)

s.t. αn,t ∈ [0, 1], ∀ n ∈ N , t ∈ T , (11)
ωn,t ∈ [0, 1], ∀n ∈ N , t ∈ T , (12)
T tot
n,t ≤ Dn,t, ∀n ∈ N , t ∈ T , (13)∑

n∈N
ωn,t ≤ 1, ∀t ∈ T , (14)

where constraint (11) represents the offloading ratio of each UD
at time slot t. Constraint (12) specifies the amount of bandwidth
allocated to each device. As indicated by constraint (14), the
sum of the fraction of bandwidth resources allocated for each
user device must be less than the available link bandwidth of
the MEC server. In general, the total delay to complete each
task should not exceed each device’s maximum delay tolerance.
Hn,t represents a flag, which indicates whether the constraint
(13) is satisfied or not .

III. PROBLEM SOLUTION

In this section, we present the formulated problem as a
markov decision process (MDP) and propose a DDPG-based
solution to allocate bandwidth and offload tasks at the MEC
server efficiently.

A. Markov Decision Process definition
MDP consists of the following key elements:
1) State: This includes the channel gain φn,t and the task

information of UD n at time slot t. Therefore, the state space
can be described as: zt ∈ Z = {φn,t, . . . , φN,t,Ωn,t, . . . ,ΩN,t}.

2) Action: The state changes depending on which ac-
tions are taken. In this case, the offloading decision
is αt = {α1,t, . . . , αN,t} and resource allocation is
ωn,t = {ω1,t, . . . , ωN,t}. Thus, the action space is at =
{α1,t, . . . , αN,t, ω1,t, . . . , ωN,t}.

3) Reward: In the state Zt, the agent executes each possible
action at and is rewarded with Rt(Zt, αt). To maximize the
reward, the agent executes as many tasks as possible within
tolerable delay, while minimizing the energy consumption
required to complete each task. As a consequence, the reward
is positively correlated with the number of tasks completed, but
negatively correlated with the amount of energy consumed. The
immediate reward, Rt(Zt, at), can be calculated using

Rt(Zt, at) =
∑
n∈N

λ1Hn,t − λ2E
tot
n,t, (15)

where Hn,t indicates whether constraint (13) is satisfied or
not. Thus, if constraint (13) is satisfied, Hn,t = 1, otherwise
Hn,t = 0. Consequently, the expected return can be defined as

Re = max
at

E
[ T∑

t=1

γt−1Rt

]
, (16)

where 0 < γ ≤ 1 is a discount factor on reward Rt.

Algorithm 1 DDPG method
1: Random initialization of the actor-critic weight paramters

for the evaluation and the target network: φ, θ, φ�, and θ�

2: Initialize replay buffer M
3: for episode = 1,Ep do
4: Receive initial observation Zt,
5: for time = 1,T do
6: Select action at by evaluation network, i.e., at =

μ(Zt|w) + no

7: Make an action at, obtain reward Rt and next
observation state Zt+1

8: Save transition (Zt, at, Rt, Zt+1) in M
9: Sample a random mini-batch transitions B

(Zi, ai, Ri, Zi+1) from R
10: Update evaluation critic and actor parameters

based on loss function and policy gradient.
11: Update the target actor-critic network parameters

using (22) and (21), respectively.
12: end for
13: end for

B. DDPG method

Due to the non-convexity of problems such as ours, using
reinforcement learning (RL) methods is imperative. One of the
most widely used techniques for tackling RL problems is Q-
learning. In Q-learning, all actions and state pairs are executed,
and values are stored in Q-tables. Upon convergence, the agent
selects actions with max Qθ(s, a) in the Q-table. As a result,
Q-learning provides an optimal solution only for small action-
state spaces.

In contrast, deep Q-learning (DQN) overcomes the dimen-
sionality limitation of Q-learning for the discrete action space
case, which leads to enhanced data efficiency and precision.
Similar to Q-learning, DQN is suitable only for a finite action
state space. Thus, to apply DQN in continuous action space,
the action would need to be discretized, which increases
the dimensionality of action space exponentially and reduces
precision [9]. As a result of the above factors, DQN is not able
to effectively handle problems involving continuous action such
as ours. Due to the high dimension and continuous state-action
space of the problem (10), we employed the deep deterministic
policy gradient (DDPG) method.

The DDPG framework consists of an evaluation network
(EN) and a target network (TN). The TN is an exact copy
of EN, which helps to trace the learned networks slowly.
This prevents the networks from becoming unstable during
learning [9]1. In addition, both networks contain actor-critic
networks. During the training process, the correlation between
transitions can reduce the convergence rate. Therefore, we
adopted a replay buffer technique in which each transition
(Zt, at, Rt, Zt+1) is saved in the replay buffer M . Following

1We can study the DDPG algorithm in details in [9].
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that, mini-batches of size B are randomly selected from M
to update the evaluation actor-critic network. The evaluation
actor network generates continuous actions at = μ(zt|φ) + no

by analyzing the policy μ(Zt|φ) and exploration noise. Also,
φ denotes the actor weight parameter and a no represents the
ornstein-uhlenbeck noise [10]. The main objective is optimizing
the expected reward given by:

J(φ) = E
[
Q(Z, a)|Z = Zt, at = μ(Zt|φ)

]
. (17)

The evaluation critic network uses Q-function to evaluate the
policy μ(Zt|φ). Based on the Bellman equation, the updated
Q-function can be defined as:

yt = Rt + γQ�(Zt+1, μ
�(Zt+1|φ�)|θ�), (18)

where φ� and θ� are the weight parameters of the target
actor and critic network, respectively. The evaluation actor and
the evaluation critic network weight parameters are updated
according to a policy gradient, ∇φJ and loss function L(θ) [9].

∇φJ = EZt

[∇φμ(z|φ)∇aQ(Z, a|θ)]
∣∣∣∣
a=μ(Z|φ)

, (19)

L(θ) = EZt

[
yt − (Q(Zt, at|θ))2

]
. (20)

In addition, the weight parameters φ� and θ� for the target actor
and critic network, respectively, are updated based on the soft
update rule2.

φ� ← ωaφ+ (1− ωa)φ
�, (21)

and
θ� ← ωcθ + (1− ωc)θ

�. (22)

Algorithm 1 shows the summary of DDPG method. From lines
1 to 2 the evaluation and target network weight parameters
and replay buffer M are initialized. In every episode, the agent
obtains a new observation state Zt and in each t, the agent
chooses an action at to perform, executes it, and receives a
reward Rt. Then it obtains its newly acquired observation state
Zt+1. Following this, in lines 8 to 9 experience transitions are
stored in the replay buffer M , and a random set of transitions
of size B are selected from M . In lines 10 to 11, the target and
evaluation networks are updated.

IV. SIMULATION RESULTS

We consider a base station located in the center of a 300m x
300m area with 13 UDs distributed uniformly within this area.
We consider a log distance path loss model and the small-scale
fading coefficient is assumed as a Rayleigh random variable,
while the large-scale shadowing is computed based on the log-
normal distribution with a standard deviation of 10 dB and a
zero mean shadowing model [11]. A MEC server in the base
station has a spectrum resource of 10MHz and a computation
resource of 18GHz. The transmission power of each UD is

2Soft updating refers to updating the target network frequently and slowly
[9].
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Fig. 2. Total accumulated rewards versus episode, UD = 13, tolerable delay
= [500, 1100]ms

set to 0.1W. UD has a 1GHz computational capacity. The UD
selects a task consisting of random values of data size, CPU cy-
cles, and tolerable delay. The ranges for data size, CPU cycles,
and tolerable delay are set as [1000, 1200]Kb, [1100, 1200]CPU
cycles per bit, and [500, 1500]ms, respectively [12].

The actor network consists of two hidden layers. There
are 256 and 128 neurons in the first and the second layer,
respectively. The critic networks consist of 1024 and 512
neurons in the first and the second layer, respectively. Also,
using extensive experimental settings, we evaluated the pro-
posed scheme with a reasonable set of parameters that gave
us a feasible network performance. For the input and hidden
layers, we used ReLU activation functions and for the output
layer, we used tanh activation functions3. After training with
4000 episodes, we tested the model with 100 episodes, each
consisting of 200 steps. Replay buffers can store up to 10000
experience transitions and 32 mini-batches at a time. The
learning rate for actor and critic network is set 0.001 and 0.01,
respectively. We compared the proposed DDPG-based model
with the following schemes.

1) Scheme 1-random task partitioning (TP) and DDPG–based
bandwidth allocation (BA) (TP(random)+BA(DDPG)).

2) Scheme 2-(Full local execution): Tasks executed locally
at UD.

3) The proposed scheme-(TP(DDPG)+BA(DDPG)): The task
offloading decisions and bandwidth allocation is based on
DDPG.

In Fig. 2, we compare the total rewards over 100 testing
episodes. Each episode contains 200–time slots, so the total
reward earned in the episode is the sum of the rewards earned in
all 200-time slots. With the proposed scheme, the total reward
accumulated in each episode is higher than with the other
schemes. The proposed scheme accumulated approximately

3The tanh activation function results in higher values of gradient during the
training phase leading to a higher update values of trainable weights in the
deep networks.
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42.08% and 174.69% more rewards than schemes 1 and 2,
respectively.

Figure 3 shows that the proposed scheme achieves superior
performance in terms of successful task completion when the
link bandwidth is varied from 8 to 16MHz, compared to
the other schemes 1 and 2. For the proposed scheme and
scheme 1, doubling the link bandwidth from 8 to 16 MHz
results in a 5% and 0.24% increase in the percentage of tasks
that are successfully completed. Since full local execution
does not utilize the link bandwidth, the percentage of tasks
completed remains unchanged. Using 16 MHz as the available
link bandwidth, the proposed scheme completed 95.9% of
offloaded tasks successfully. This is approximately 11.89% and
89.05% higher than schemes 1 and 2, respectively.

Figure 4 shows the amount of energy consumed by all the
UDs in relation to the increasing number of UDs [11, 16]. When
UD is 11, the proposed scheme has approximately 84.96%
and 93.47% lower energy consumption than schemes 1 and 2,
respectively. Likewise, when UD is 16, the proposed scheme
has approximately 53.89%, 79.68% lower energy consumption
than schemes 1 and 2.

V. CONCLUSION

In this paper, we proposed a partial task offloading and
resource allocation scheme for multi–user MEC network. To
reduce total energy consumption while maximizing the number
of tasks completed within a tolerable time period, we leveraged
a deep deterministic policy gradient (DDPG)–based solution.
The MEC server received offloaded task requests with varying
resource requirements from the UDs in the network. It then
determined the optimal resource allocations and offloading
decisions. The simulation results showed that the proposed
method completes a greater number of tasks within a tolerable
delay and reduces the energy consumption in the network,
compared to those of other conventional schemes.
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