
Training and Validating of Advanced Flow-Based
Network Traffic Classifiers under Real-World

Conditions
1st Sebastian Karius

Institute for Computer Science
MLU Halle-Wittenberg

Halle (Saale), Germany
sebastian.karius@informatik.uni-halle.de

2nd Mandy Knöchel
Institute for Computer Science

MLU Halle-Wittenberg
Halle (Saale), Germany

mandy.knoechel@informatik.uni-halle.de

3rd Sandro Wefel
Institute for Computer Science

MLU Halle-Wittenberg
Halle (Saale), Germany

sandro.wefel@informatik.uni-halle.de

Abstract—Robust network traffic classification (NTC) is an
essential component of intrusion detection and intrusion preven-
tion systems as well as quality of service applications. Modern
NTCs use flow-based methods to either support or replace single-
packet-based methods, since network traffic is usually encrypted.
The flow-based methods are often implemented using neural
networks. These neural networks are usually trained and tested
using the same dataset. We propose a new testing method in
which the data used to test the neural network occurs at a
later time than the data used to train the neural network. For
this, we used a dataset recorded by a honeypod that captured
attacks, particularly on the SSH service, as well as authorized
logins. The data was recorded over a period of over two years.
Past data was used for training and recent data was used for
testing, with a large time gap between the last datapoint of the
training data and the first datapoint of the testing data. We
show that existing neural network models developed for NTC
are able to classify the attacks in our test scenario equally well,
for authorized accesses the quality is worse. This shows that the
proposed learning method for our chosen models is sufficient to
robustly classify future network traffic in the scenarios tested
here.

Index Terms—network traffic classification, ntc, real-world,
flow-based

I. INTRODUCTION

Network traffic security is commonly achieved using Intru-
sion Detection Systems (IDS) or Intrusion Prevention Systems
(IPS). They are centrally installed network monitoring systems
that are often integrated directly into routers or similar network
devices. Their purpose is to detect or block malicious traffic
to protect the attached network nodes. The problem is that the
network traffic is usually encrypted, so to our knowledge it is
impossible to examine the content of the network packets in
real time and thus detect malicious traffic. To avoid breaking
end-to-end encryption, flow-based network traffic classifiers
are used to detect malicious or unwanted network traffic, with
the most efficient ones working on the basis of neural networks
[1] that have to be trained before they can classify (live)
network traffic.

A dataset with suitable sample data is needed to train the
neural network accordingly. In order to determine the quality

of the learned classifier, test data is required in addition to the
training data. This test data is usually taken from the same
initial dataset that was used to train the network, so that a
part of the initial dataset is used for training and another, often
much smaller part, is used for testing.

We argue that this approach of using data that was recorded
more or less at the same time for learning and testing is
questionable. Since the data obtained within a limited time
period may have similar properties which are beneficial for
classification. In a real scenario, however, the classifier must
be able to handle new data that arise later in time. New variants
of software and protocols, new attack methods, scanners and
scripts or changes in the connected network can have an
impact on the data. To determine the actual performance of
the classifier, it is necessary to test with data that occurred at
a (much) later time in the network than the training data.

In this paper, we investigate the suitability of current net-
work traffic classifiers for classifying future network traffic in
real-world conditions by applying it to data recorded over a
very large period of time. We use data from the distant past
(from 2 to 3 years ago) to train the methods, and data from the
recent past to validate the methods trained on this old data. In
addition, time slots are used to enable real-time classification.

II. RELATED WORK

There are many approaches that apply neural networks to
Network Traffic Classification (NTC). However, they differ
from our approach in the way they are validated.

Bergmeir and Benı́tez [2] showed that using the last blocks
of time series data for validating machine learning methods for
time series forecasting (which is definitely a different problem
from data classification) has no advantage over cross validation
in terms of the robustness of the trained model. This shows that
randomly splitting the data has no disadvantage over simply
splitting it into old and new data for training and testing.

Moore et. al. [3] recorded real-world network traffic in ten
half-hour segments over a 24-hour period. This dataset was
used by Malik et. al. [4] to train and validate a neural network.
In their approach, precomputed flow features were used as

126978-1-6654-9927-9/22/$31.00 ©2022 IEEE APCC 2022

data points. The classifier achieved an overall accuracy of
96%. Although the records are already divided into temporal
sections and therefore would be suitable to train on older data
than to validate, they have not taken advantage of this. Instead,
training, validation and testing were performed within a single
temporal section only.

Another approach to the problem of changing network
traffic is to build live-learning traffic classifiers [5], [6]. The
idea is to collect unidentifiable flows and present them to the
operator or admin, who then has to manually label the traffic.
After labeling, the classifier is trained with the new data.
This approach requires on-site learning and thus additional
computing and human resources at the location where the
traffic is classified. To estimate the effort for this, an estimation
of how often the classifier needs to be adapted is required.

III. OUR APPROACH

A. Dataset

To determine the impact of the temporal distance of the
training data from the data to be classified, we classify data
taken at different temporal distances from the training data
with the same trained model.

The data we use was recorded over several years in a
honeypot used to capture attacks via Secure Shell (SSH). Due
to the original purpose of the honeypot, only SSH traffic,
meaning Transmission Control Protocol (TCP) traffic on server
port 22, is recorded. Since the honeypot was operated over a
long period of time, network traffic with attack patterns and
methods was recorded that changed over time.

The captured network traffic can be divided into four
classes: brute force attacks, successful logins (without interac-
tion on the server or opening a tunnel), successful logins with
subsequent interaction on the server, and successful logins with
subsequent opening of a tunnel. Since brute force attacks just
consist of a series of unsuccessful logins, these four classes
can be combined into two more general classes: brute force
attacks and intrusion. The four classes and the time interval of
recording are shown in Table I. Combining the classes is also
beneficial regarding the distribution of the recorded data points
since the classes brute force attacks and successful logins with
subsequent opening of a tunnel contain about 10 times more
data points than the other two classes. For the training of a
neural network it is more suitable that the classes have equal
amounts of data points. The classification was performed with
the decrypted traffic so that the network traffic was perfectly
classified. The classification is stored in a database where
for each flow of the recorded network traffic the relevant
information is stored. Although this already is a solution to
the classification, it cannot be used for an IDS or IPS, because
the network traffic can only be decrypted on the end devices.

The dataset contains both the raw recorded network data as
well as already calculated network flows. However, since we
need special network flows, they are calculated directly from
the raw data. Hereafter, we are able to compute features from
the flows as well as using raw packets as data points for the

neural network. So the various models from the literature can
be used.

For the validation of the models we had to search the
dataset for periods where both brute force attacks and intrusion
traffic is contained. In our recorded network traffic data we
found corresponding sections in the periods 2021-07-28 00:00
- 2021-07-29 12:00 (I), 2021-08-18 12:00 - 2021-08-20 12:00
(II) and 2021-08-25 00:00 - 2021-08-25 12:00 (III), i.e., 63,
84 and 91 days or approximately 2, 2.5, and 3 months after
the last data point in the recording of the training data. We
were not free in choosing those periods, because the dataset is
a real-world recording, network traffic of the different classes
is not evenly distributed.

For the test data the raw network traffic data is ideal,
because it is stored as it appeared at the server and therefore
is most similar to the applications in IDS or IPS systems.

B. Preprocessing

The preprocessing step includes creating the flows and, in
the case of pre-calculated features, the calculation of these
features. The generation of flows is optionally preceded by a
step for the generation of time slots.

The network traffic from the dataset is first divided into
flows consisting of 100 packets each. If there are not enough
packets in the flow (which are calculated from packets within
a slot), it is padded with zeros, as usually done; if there are
more packets, they are truncated to 100. Since mainly the type
of login is to be classified and a typical SSH login duration is
about 20-30 packets, 100 packets are sufficient to determine
the type of login and the type of action performed on the
server immediately after the login.

For real-time or near real-time applications, it is often not
feasible to wait for a flow to complete before classifying it.
IPS applications, for example, need information about the
flow as soon as possible to block malicious network traffic.
IDS, on the other hand, only need to notify of a possible
intrusion so that the flow can be classified when it is complete,
regardless of whether it is a thread. Bursts or time slots can
be used to enable real-time classification. A burst logically
divides the network traffic into discrete, manageable portions
by grouping packets until no new packets arrive within a
certain amount of time, the so-called burst threshold [7]. The
problem with bursts is that if the network traffic is recorded at
a router to which a network with multiple clients and servers is
connected. Here, the constant stream of packets could result in
no burst being completed and, consequently, no classification
or severely delayed classification. To solve this problem of a
never idle system, we put hard limits on the number of packets
and the amount of time a single burst is allowed to have. We
refer to these as time slots to distinguish them. The advantage
of time slots is that they end predictably and therefore provide
a more predictable classification delay.

One consequence of the use of time slots is that flows are
split. This occurs whenever packets of a flow span across
two or more time slots. The original flow is thereby split
into several flows, most often only two, that is calculated

127

TABLE I
DATE OF THE FIRST AND LAST FLOW FROM THE RESPECTIVE CLASSES OF FLOWS IN THE TRAINING DATASET FOR EACH OF THE FOUR CLASSES.

Class Specific class Start End
Brute force attacks 2019-01-08 2021-04-30

Intrusion Successful login 2017-07-25 2021-05-24
Intrusion Successful login with subsequent interaction 2017-07-23 2021-05-01
Intrusion Successful login with subsequent tunneling 2017-08-31 2021-05-26

within the time slots (Figure I). Since those split flows do not
necessarily contain the information to decide whether a flows
was a brute force attack or a successful login, those flows
should be classified as a separate “split”-class. The neural
network model predicts only the given classes, so the just
mentioned “split”-class must additionally be presented to the
neural network in the training data. This was achieved by
artificially creating split flows by randomly splitting random
sampled flows.

Another disadvantage is, that low throughput applications
are poorly represented because there are only a few packets in
a slot. Depending on the capacity of a slot, the classification
of short flows may be delayed because time slots, unlike flows
or packets, are not padded. For example, a single SSH login
attempt requires about 20 packets; if the slot has a capacity of
100 packets, the classification can be delayed by 80 packets
in the worst case.

Despite the disadvantages, the use of slots is preferable
because of the predictable termination. As noted above, early
classification of long flows is more relevant to IPS than
undelayed classification of short flows. The delay can be
controlled by the slot generation parameter explained next.

As flows with low throughput are poorly represented by the
time slots, they are not considered in this work. This includes,
for example, flows that only transmit a keep-alive packet or a
similar status message.

We used two different parameter sets for the time slot
generation. The first slot parameter set represents a slow de-
tection where fewer errors are tolerated, the second parameter
set represents a faster but less accurate detection. For this
purpose, the first slot parameter set was limited to a capacity
of 2000 packets and 10 seconds (A), and the second one
is limited to 100 packets and 5 seconds (B). The selection
of the parameters depends on the captured network traffic
and the maximum acceptable delay of the classification. For
the captured network, the total throughput, the throughput
and number of attached network nodes and the number of
communicating services are most relevant. The two sets we
have chosen are intended to represent two sets of parameters
for different objectives. Set A aims at less splitted flows and
thus at a more robust classification. Set B aims at a fast
classification that tolerates a less robust classification in return.

Depending on the neural network model used, the packets
themselves are either represented as pre-calculated features or
as a byte vector. As stated in the next section, for the pre-
calculated features, the features proposed by Lopez-Martin et
al. [8] are used except for the window size. In the case of the
byte vector representation, since the packets are of variable

Fig. 1. Creation of time slots and flows. Boxes represent network packets.
Packets of the same color belong to the same original flow. Because of the
time slots, a single original flow can be split into multiple flows.

length, the packets are zero-padded or truncated to 1500 bytes.
For better numerical stability each byte is divided by 255 to
get a number in the range [0, 1]. To preserve the temporal
relation between the packets, the byte vector representation
is extended by a timestamp value, which was recorded and
stored in the pcap files.

C. Neural Network Model

Since we used the features proposed by Lopez-Martin et al.
[8], we also used the neural network model proposed in their
paper. The paper describes multiple neural networks which are
variations of a combination of Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs). We decided
to use the neural network “CNN+RNN-1”, which is not the
best performing in the paper, but was the best performing in
our tests, which is most likely due to the different datasets
used.

For the byte vector representation data we use the “1D-CNN
for traffic characterization” neural network model proposed by
Lotfollahi et al. [9].

Since we used a smaller dataset, we had to reduce the
degrees of freedom of the neural network models to prevent
overfitting. For this purpose, we reduced the size of the fully
connected layers.

The concrete used models are shown in Table II and III.
NoF stands for number of features, Kl is the used kernel with
the dimensions in the order of the dimensions of the data, Str
stands for stride (only used in one table), BN indicates whether
batch normalization is applied to the layer and DO stands for
dropout.

Besides the reduction of some of the number of features,
the number of epochs was adopted according to the amount of
classes, the training data and the used neural network model.
To prevent overfitting a lower amount of epochs is used, the
decision when to stop training was made based on the loss and
accuracy curves on the training and validation data which were
generated by the tensorflow framework during the training

128

TABLE II
ADOPTED MODEL OF CNN+RNN-1 [8].

Type NoF Kl Str BN DO
Conv2D 34 4, 2 - No -
MaxPooling2D 3, 1 - Yes -
Conv2D 34 3, 2 - No -
MaxPooling2D 3, 2 - Yes -
Reshape - - - - -
RNN 100 - - No 0.2
Dense 100 - - No 0.2
Dense NoC - - - -

TABLE III
ADOPTED MODEL OF 1D-CNN FOR TRAFFIC CHARACTERIZATION [9].
THE VALUES IN BRACKETS SHOW THE NUMBER OF FEATURES USED IN

THE ORIGINAL MODEL WHICH WHERE ADOPTED IN THIS WORK.

Type NoF Kl Str BN DO
Conv1D 200 5 3 Yes 0.05
Conv1D 200 4 3 Yes 0.05
MaxPool - - 2 No 0.05
Flatten - - - - -
Dense 20 (200) - - No 0.05
Dense 10 (100) - - No 0.05
Dense 5 (50) - - No 0.05
Dense NoC - - - -

phase. Since there is no best practice for this, the decision
must be made based on experience. The 1D-CNN model was
trained for 30 epochs, and the CNN+RNN-1 model for 50
epochs.

D. Testing

One consequence of time slots is that originally contiguous
flows are broken into multiple flows (see Fig. 1). The problem
arises that these subflows must be assigned to the original
flows so that the classification of the subflows can be checked
against the given classification of the orginal flows. A subflows
is mapped to an original flow if the IP addresses and the port
numbers match and the timestamp of the first packet of the
subflows is not earlier the timestamp of the first packet of
the original flow, and equivalently for the last packet. All this
properties except the timestamps have to match exactly.

We decided to consider flows with less than 21 packets to
be split flows. The problem is that it is difficult to give a
practical lower bound for the amount of packets in a flow to
be considered split, because of the different ways to perform
the the SSH handshake and authentication. Three packets are
needed for the TCP handshake [10], another seven for the
SSH handshake, and three for the SSH authentication [11].
Both sides of the connection may decide to send multiple
SSH commands in a single TCP packet which would reduce
the number of packets needed. In addition, the number of
packets increase if additional TCP acknowledge packets are
sent, which is also not predictable. In summary, flows that
contain full SSH authentication contain at least 21 packets.

The amount of split flows increases when time slots are
created with fewer packets. This can occur especially with
manual logins, e.g. due to password entries that delay the
login. In contrast, machine scans are significantly faster. A

wide timeslot is required to capture the entire manual logon.
This leads to a trade-off between fast classification with small
time slots that are completed after a short time and more robust
classification with fewer split flows.

We used common metrics to determine the performance of
the classifiers. The scikit library [12] provides a wide variety
of metrics, of which we use the following: weighted F1, macro
F1 and balanced accuracy. The weighted and macro version of
the F1 score is the average of the F1 scores of each class, since
the normal F1 score is only defined for binary classification
and therefore is not applicable to our multi-class classification.
In case of weighted F1, the average is calculated using the
arithmetic mean, weighted by the amount of datapoints per
class. For macro the mean F1 score of all classes is used.
Balanced accuracy is the arithmetic mean of the accuracy per
class, weighted by the amount of datapoints per class.

IV. RESULTS

From the training data we separated 10% as validation data,
which are not the same as the test data, which are from
a different time period. This data is used to determine the
quality of the learning process of the neural network, during
the learning process. For the validation data we used blocks
that are chronologically posterior to the training data because
the classifier is supposed to predict future data, which is to be
represented in the validation data.

The validation data show that the models were properly
trained. This is clearly indicated by the high precision and
recall values shown in the confusion matrix (Fig. 2) by the
rightmost column and the bottom row, respectively. All classes
were learned equally well, and no outliers are apparent.

A. Test dataset

This section presents the results obtained using the two
neural network models, the two slot generation parameter sets
and the three test datasets. We used the performance metrics
described in Section III-D: balanced accuracy, weighted F1
and macro F1. The results are presented in Table IV and
Fig. 3. To fully represent the influence of the slot generation
parameter, we have included the percentage of split flows.

Both neural network models achieve a performance above
0.947 in all three parameters for parameter set A, and above
0.799 for parameter set B. The weaker performance of B
reflects our expectation as flows are split more often and
thus incomplete flows need to be classified more often. For
parameter set A around 20% of the flows are split while
at parameter set B around 60% are split. The performance
metrics also include the correct classification of the split flows
as such.

As expected, the higher the ratio of split flows, the worse
the quality of the classifier. With parameter set A, the scores
of the metrics are similar to the results with the validation
data. Using parameter set B, compared to A, the ratio of split
flows increases from 0.2 to 0.6, while the balanced accuracy
and the macro F1 scores decreas from 0.98 to 0.89. Due to the
weighting of the classes, the weighted F1 score only decreases

129

TABLE IV
RESULTS FOR EACH MODEL, SLOT PARAMETER SET AND TEST DATA SET. THE METRICS USED ARE BALANCED ACCURACY, WEIGHTED F1 AND MACRO

F1.

Model Para. Data Accuracy F1 weigh. F1 macro % split

1D-CNN

A
I 0.986 0.987 0.983 18.8
II 0.986 0.984 0.984 21.7
III 0.957 0.981 0.962 23.4

B
I 0.887 0.925 0.915 61.8
II 0.896 0.942 0.924 64.5
III 0.887 0.939 0.893 63.5

CNN+RNN-1

A
I 0.980 0.980 0.976 18.8
II 0.974 0.970 0.972 21.7
III 0.947 0.976 0.949 23.2

B
I 0.864 0.914 0.879 61.8
II 0.799 0.888 0.812 64.5
III 0.864 0.914 0.879 61.8

Fig. 2. Confusion matrix of the validation data for the 1D-CNN model (top)
and CNN+RNN-1 model (bottom).

Fig. 3. Results for each model, slot parameter set and test data set. C stands
for 1D-CNN, R for CNN+RNN-1. A and B are the parameter sets. The roman
numerals I, II and III denote the datasets.

from 0.98 to 0.93 for the 1D-CNN and 0.9 for the CNN+RNN-
1 model.

Fig. 4 shows that split flows are classified more robust than
the other classes regardless of the parameter set. This has
the effect that for parameter set B, the weighted F1 score
is lower than the scores of the other two metrics, compared
to parameter set A, where the scores of the metrics are closer
together. This is because the weighted F1, unlike the other two
metrics, takes into account the imbalance of the classes [13].
There are about 5 times more split flows and only about 2

3 the
number of datapoints for brute force attacks and successful
login for parameter set B. Because of this the weights for the
weighted F1 metric change, unlike the weights for the other
two metrics, which depend only on the number of classes. The
effect of this can be seen in Fig. 3. For parameter set B, the
bar for weighted F1 sticks out above the other two metrics.
In terms of robustness, this means that the classes were less
equally well classified.

In comparison, the 1D-CNN model was able to classify the
data better than the CNN+RNN-1 model. This difference was

130

Fig. 4. Confusion matrix of the CNN+RNN-1 model, on dataset II, on
parameter set A (top) and B (bottom). The split class perform equal, the
bruteforce and login classes perform worse with parameter set B.

not evident in the validation data.

V. CONCLUSION

Our evaluation of flow-based network traffic classifier pro-
vide evidence that neural network based classifiers, even if
tested only on a dataset recorded over a short period of time,
can reliably classify future network data and are thus suitable
for real-world Network Traffic Classification. For live-learning
traffic classifiers, which were not the main focus of this work,
the results show that the learned models can remain accurate
for a long time without much manual effort.

The existing methods based on neural networks we have
evaluated in this work can be used for network classification
in real-world conditions. For this purpose, the classifiers
were tested with a new dataset. To simulate a real-world
environment, the training data was taken from very early

recordings in the dataset while the test data was taken from
recent recordings.

The requirement for modern IDS and IPS is not only to
classify as accurately as possible, but also as quickly as
possible. This was made possible by using time slots. The
associated losses in the quality of the classification were also
investigated. Here, our assumption was confirmed that with
a shorter available time and the resulting smaller number
of packets, the quality of the classification is affected. If
a sufficient number of packets are used, the quality of the
classification is at a level similar to that achieved in the original
work.

REFERENCES

[1] E. Biermann, E. Cloete, and L. M. Venter, “A comparison
of Intrusion Detection systems,” Computers & Security,
vol. 20, no. 8, pp. 676–683, Dec. 2001. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167404801008069

[2] C. Bergmeir and J. M. Benı́tez, “On the use of cross-
validation for time series predictor evaluation,” Information
Sciences, vol. 191, pp. 192–213, May 2012. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0020025511006773

[3] A. Moore, D. Zuev, and M. Crogan, “Discriminators for
use in flow-based classification,” undefined, 2013. [Online].
Available: https://www.semanticscholar.org/paper/Discriminators-
for-use-in-flow-based-classification-Moore-
Zuev/68919d1eaf5708163da8172691a8bec25b64105b

[4] A. Malik, R. de Fréin, M. Al-Zeyadi, and J. Andreu-Perez, “Intelligent
SDN Traffic Classification Using Deep Learning: Deep-SDN,” in 2020
2nd International Conference on Computer Communication and the
Internet (ICCCI), Jun. 2020, pp. 184–189.

[5] J. Zhang, F. Li, H. Wu, and F. Ye, “Autonomous Model Update Scheme
for Deep Learning Based Network Traffic Classifiers,” in 2019 IEEE
Global Communications Conference (GLOBECOM), Dec. 2019, pp. 1–
6, iSSN: 2576-6813.

[6] A. Tongaonkar, R. Keralapura, and A. Nucci, “SANTaClass: A Self
Adaptive Network Traffic Classification system,” in 2013 IFIP Network-
ing Conference, May 2013, pp. 1–9.

[7] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “AppScanner:
Automatic Fingerprinting of Smartphone Apps from Encrypted Network
Traffic,” in 2016 IEEE European Symposium on Security and Privacy
(EuroS P), Mar. 2016, pp. 439–454, iSSN: null.

[8] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret,
“Network Traffic Classifier With Convolutional and Recurrent Neural
Networks for Internet of Things,” IEEE Access, vol. 5, pp. 18 042–
18 050, 2017, conference Name: IEEE Access.

[9] M. Lotfollahi, M. Jafari Siavoshani, R. Shirali Hossein Zade,
and M. Saberian, “Deep packet: a novel approach for encrypted
traffic classification using deep learning,” Soft Computing,
vol. 24, no. 3, pp. 1999–2012, Feb. 2020. [Online]. Available:
https://doi.org/10.1007/s00500-019-04030-2

[10] “rfc793.” [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc793section-3.4

[11] “rfc4253.” [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc4253

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine Learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[13] “sklearn.metrics.f1 score.” [Online]. Available: https://scikit-
learn/stable/modules/generated/sklearn.metrics.f1score.html

131

