

Improvement of the Algorithm to Evaluate
Security Strength of Share Assignment on

Communication Network in SSS

Masaki Tanise1 and Masahiro Hayashi2
1,2 Major of Information, Graduate School of Integrative Science and Engineering, Tokyo City University,

1-28-1 Tamazutsumi, Setagaya-ku, Tokyo 158-8557, Japan
E-mail: 1g2281442@tcu.ac.jp, 2mhaya@tcu.ac.jp

Abstract— We propose a new algorithm for the share

assignment problem, which evaluates how the security
strength varies depending on where shares are stored on a
communication network in the secret sharing scheme. For a
long time, the secret sharing scheme was studied only in terms
of how to make shares. However, a recent study indicated that
the security strength depends on where shares are stored on
the communications network after they have been made and
proposed a method for evaluating the security strength of
each allocation of shares. However, the algorithm of the
proposed method is inefficient. Here, we propose an improved
algorithm based on a binary tree search. Numerical
experiments show that the presented method surely reduces
the computer usage time compared with the original method.

Keywords—communication networks, security, domain,
secret sharing scheme

I. INTRODUCTION
The traditional approach to improving security is to

encrypt data by using a secret key. However, studies such as
refs. [1]-[9] claim this method is inconvenient because key
management is not so easy and encryption is not always
effective; for instance, a hacker could steal the hardware
containing the data and spend time offline decrypting it.

Against such threats, researches such as refs. [1]-[9]
show that the secret sharing scheme (SSS) can be used to
secure data. This technique splits data (called the secret)
into pieces (called shares) and spreads them to people called
participants so that a hacker cannot recover the secret even
if he can aggregate a certain number of shares. It does not
need to manage keys and offers high security even if some
participant's hardware is stolen.

Research on secret sharing started in 1979 [1][2], and
numerous researches appeared after refs. [1][2], including
[3]-[9]. Ref. [8] found that the strategy of assignment has a
big impact on the security strength of this method, as
explained below.

Today’s cloud computing systems store important data
on communications networks. If the participants in the
secret sharing scheme are nearby, e.g., in the same DNS
domain, the security strength is not so high. On the other
hand, if the participants are in different DNS domains, the
security strength is much higher because a hacker would
have to aggregate shares from different domains.

Ref. [8] also proposed a method to evaluate the security
strength. It gave a model representing a network by a graph
with domains representing DNS domains, DNS zones,
private networks, or other groups of nodes wherein a single

person or a single section is consistently responsible for the
security of the nodes in each group.

However, the evaluation algorithm of ref. [8] still has a
problem in that its computation time seriously increases as
the number of domains increases.

Here, we propose a new algorithm to reduce the
computation time below that of the algorithm in ref. [8]; it
is based on the idea of a binary tree search. Some numerical
examples show the effectiveness of our proposal.

II. PRELIMINARY
A graph is a mathematical object consisting of nodes

and links. A link is defined as any pair of nodes. An
example of a graph is illustrated in Fig. 1. The circles
indicate nodes and the lines indicate links.

Fig. 1. Example of a graph.

A graph is denoted by G = (V, E), where V is the set of
nodes and E is the set of links. If a node v ∈ V is an end
node of a link e, we say that ‘link e connects to v’ and ‘node
v connects to e’. If node vx and vy are at either end of the
same link e, then e is expressed by e = (vx, vy). If v is deleted
from the graph, the link connected to it is also deleted.

Suppose we have the following sequence of nodes and
links between nodes vx1 and vxu.

v x1 - (vx1, vx2) - vx2 - (vx2, vx3) - … - (vxu-1, vxu) – vxu

Here, we say that ‘vx1 and vxu are connected’. We call the
above sequence a ‘path from v x1 to vxu ’.

We call vx1 the ‘start node’ and vxu the ‘last node’. If we
do not care which nodes are the start or last, we use the word
‘path’ for the above sequence.

For any sets α and β, α – β = {x | x∈α, x∉β }.
For example, {1, 2, 3, 5} – {2, 5, 7} = {1, 4}.

P() denotes the probability of occurrence of an event
in ().

120978-1-6654-9927-9/22/$31.00 ©2022 IEEE APCC 2022

III. PREVIOUS RESEARCHES

A. Threshold Secret Sharing Scheme
In this paper, we focus on threshold secret sharing,

which is a typical SSS [1][2][7]. This technique splits the
secret into n shares, and recovery of the secret is impossible
unless k (≤n) shares are aggregated.

B. Problem of Share Assignment
The security strength of SSS is affected not only by k

and n, but also the places to which shares are assigned in
the communications network. If k shares are in the same
computer, the security strength is very weak. If they are in
different personal computers or different DNS domains,
then the security level becomes higher.

A simple example is illustrated in Fig. 2. Here, when
n = k = 2, readers will agree that the situation of ‘one share
in Domain 1 and the other is Domain 2’ is more secure than
if both shares were in the same domain.

Fig. 2. Example network.

Ref. [8] first pointed out this problem and gives its
mathematical formulation together with its solution.

C. Key Idea of the Mathematical Formulation
Ref. [8] pointed out that the PDCA (Plan Do Check,

and Action) cycle is useful for tackling the problem. (Note
that ref. [8] explained its scheme for the case of k = n but it
can be easily extended to the cases of k < n)

In the PDCA cycle, we first enumerate the feasible
plans of the structure of the communications network, the
places to which shares are to be assigned, and the cost
constraint. Second, we evaluate the security strength of
each plan. Third, we find which plan works the best by
analyzing the results of the evaluations. Fourth, we
implement the best plan and feedback our implementation
experience to the first step.

The difficulty here is that many factors affect the
security strength of SSS, in particular, the number of paths
from the hacker to the participants and the security strength
of the hardware and software on those paths.

Below, we explain how to overcome this difficulty by
imagining an example not related to communications
networks.

Countermeasures against viral epidemics are executed
by nations, local governments, companies, and other
organizations. When confronted with an outbreak, these
organizations will try to close the areas under their control.
If their efforts are successful, a pandemic will be avoided.

Human society consists of many sub-societies within
certain areas, and each sub-society has the responsibility
and right to control their areas. Supposing that we call a
sub-society a ‘domain’, the strength to resist the virus
depends on the strength of each domain and the structure
of the domains. Fig. 3 is a conceptual view of this
situation.

Fig. 3. Domains and their structure.

Although there are many factors that affect society’s
ability to resist a virus, it is reasonable to regard them as
parameters of the above structure. For example, a country
that inhibits entrance to foreigners corresponds to a
reduction in the probability of the virus entering the country.

The key idea of ref. [8] is to apply the above perspective
to the problem described in Subsection B. That is, ref. [8]
shows that communications networks, including the
Internet, are actually a group of many domains, including
DNS domains, DNS zones, and private networks, where
security measures are executed by the managers of each
domain. This is similar to the framework of
countermeasures against a virus explained through Fig. 3,
and therefore, a model based on a domain structure is also
reasonable for a communications network.

D. Mathematical Formulation
Based on the idea presented in the previous subsection,

ref. [8] proposed the mathematical model, Λ = (G, D),
where G (denoting the communications network) = (V, E)
and D denotes the set of domains, i.e., {D1, D2, … , Dm},
where Di (i = 1, 2, … , m) ⊆ V.

In particular, a node in G represents a server, router, or
other equipment. A link in G represents a logical link
between two nodes. D represents the set of DNS domains,
DNS zones, private networks, or other sets of
independently controlled equipment on the communication
network.

The nodes are divided up into three groups. Nodes in
the first group are called ‘intrusion gates’, nodes in the
second group are called ‘participants’, and nodes in the
third group are called ‘transition nodes’.

Participants represent a set of equipment having shares,
and the hacker’s target is to reach k participants from one
of the intrusion gates through the paths of G. An example
of Λ is illustrated in Fig. 4.

Note that in the figures in this paper, filled circles
represent intrusion gates, and the other circles show
participants or transition nodes. Participants are
additionally indicated by arrows like in Fig. 4. If a circle is
not filled and not pointed to by an arrow, then it is a
transformation node. Domains are illustrated as dotted
closed curves.

If each domain is secure, then the secret is
safe.Domains that are encompassed by a
domain are safer.

121

Fig. 4. Example of Λ.

D1, D2, … , Dm satisfy the following conditions.

Domain condition 1.
 For any Di, Dj ∈ D, Di ⊆Dj or Dj ⊆ Di.

Domain condition 2.
For any Di, a real number pi satisfying 0 ≦ pi ≦ 1 is
assigned.

If a hacker can intrude into domain Di, we say that ‘Di
is open’; else ‘Di is closed’. The events of domains
becoming open are assumed to be probabilistically
independent. pi in domain condition 2 is the probability that
a hacker can open the corresponding domain.

A hacker must break the security system of every
domain on the paths from an intrusion gate to k participants.

E. Measure of Security Strength
Ref. [8] proposed to evaluate the security strength of Λ

by the probability of a hacker being able to reach k
participants from an intrusion gate. We denote this
probability by PL.

For ease of understanding, we will explain PL with the
help of the example in Fig. 4, where we will assume that k
= n = 2.

A hacker can intrude into the network shown in Fig. 4
from either of intrusion gate 1 or 2. Let us suppose that the
hacker enters through intrusion gate 1. In this case, he
succeeds in reaching all participants if domains D1 and D3
are open. Next suppose that the hacker enters through
intrusion gate 2. In this case, he succeeds in reaching all
participants if domains D2 and D3 are open. Therefore, PL
is determined by

PL = P(‘D1 and D3 are open’ or ‘D2 and D3 are open’)

(See Section Ⅱ for P().)

In this case, PL can be easily evaluated (computed) as
follows.

PL = P(‘D1 and D3 are open’ or ‘D2 and D3 are open’)
= P(‘D1 and D3 are open’) + P(‘D2 and D3 are open’)
– P(‘D1 and D3 are open’ and ‘D2 and D3 are open’)

 = p1p3 + p2p3 – p1p2p3 (1)

If p1 = 0.01 and p2 = p3 = 0.02, then PL = 0.01 × 0.02 +

0.02 × 0.02 – 0.01 × 0.02 × 0.02 = 0.00596.

Below, we give a mathematical definition for PL.

First, we define a random variable Xh for h = 1, 2, … ,
m, satisfying the following condition.

Condition for Xh.

Xh = 1 if domain Dh is open and Dh is deleted from Λ.
Xh = 0 if domain Dh is closed and Dh and all nodes in Dh

are deleted from Λ (because all nodes in Dh do not exist
from the viewpoint of the hacker if Dh is closed.)

For example, if X1 = 1, X2 = 0, and X3 = 1, then Fig. 4 is

converted into the model in Fig. 5, and the hacker can reach
all participants.

Fig. 5. Converted model.

Second, we define the concept of a connected set.

If A = {Da1, Da2, … , Daw} ⊆ D satisfies the following
conditions, then A is called a ‘connected set’.

Connection condition 1.

If Xh = 1 for any h ∈ {a1, a2, … , aw}, then k participants
and one of the intrusion gates are connected in the
corresponding converted model.

Connection condition 2.
If Xh = 0 for at least one of h ∈ {a1, a2, … , aw} and
any h ∈{1, 2, … , n} – {a1, a2, … , aw}, then no
participant is connected to any of the intrusion gates.
(See Section Ⅱ for subtraction of sets.)

A connection set is a minimal set of domains through

which the hacker can reach k participants if these
domains are open.

In the case of Fig. 4, {1, 3} and {2, 3} are connection
sets.

PL is defined in terms of the connection sets as follows.

PL = P(all domains in at least one connection set are open)

F. Algorithm for Evaluationg PL
Ref. [8] also proposed an algorithm to evaluate PL,

called the ‘truth table algorithm’. This subsection
summarizes it.

A ‘state’ is defined as (X1, X2, … Xm). The set of all
states for a given m is denoted by Sm. For example, S3 is as
follows.

S3 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0),

(1, 0, 1), (0, 1, 1), (1, 1, 1)}

If the h-th element of a state is 1, domain Dh is open;
else Dh is closed. The structure function Φ (X1, X2, … , Xm)
is a function from Sm to {1, 0}.

Participant
D3

D1

D2

Participant

Intrusion gate2

Intrusion gate1

Intrusion gate1

Participant

Intrusion gate2 Participant

122

 If k participants and one of the intrusion gates are
connected in the corresponding converted model for a
given state (X1, X2, … , Xm), then Φ (X1, X2, … , Xm) = 1;
else Φ(X1, X2, … , Xm) = 0.

Φ(X1, X2, X3) for Fig. 5 is the following truth table:

Φ(0, 0, 0) = 0, Φ(1, 0, 0) = 0, Φ(0, 1, 0) = 0, Φ(0, 0, 1) = 0,
Φ(1, 1, 0) = 0, Φ(1, 0, 1) = 1, Φ(0, 1, 1) = 1, Φ(1, 1, 1) = 1.

Suppose Qh = ph if Xh = 1 and Qh = 1 – ph if Xh = 0.
Now, PL can be evaluated as follows.

 =

∈
 , (2)

 where Sm’ ≡ {s | s ∈ Sm, Φ(s) = 1}.

For Fig. 4, PL = p1(1 – p2)p3 + (1 – p1)p2p3 + p1p2p3 .
It is easy to see that this is equivalent to the r.h.s. of Eq. (1).

The truth table algorithm for evaluating PL is listed
below.

TRUTH TABLE ALGORITHM
INPUT: Λ
Step 1. Enumerate all states for Λ.
Step 2. Compute the output of the structure function for

every state enumerated in Step 1.
Step 3. Compute the r.h.s. of Eq. (2) and output it as the

evaluation result.

G. Problem of the Turth Table Algorithm
The truth table method enumerates all states for fixed

m (number of domains), and the number of these states is
2m. This algorithm is only valid if we have a small number
of domains, while problematic if the number of domains
becomes large, because the execution time of this algorithm
on computer exponentially increases due to the increase of
the number of domains. Accordingly, it is an urgent task to
develop a faster algorithm for evaluation.

IV. PROPOSAL

A. Key Idea
We define PL(Λ) as the value of PL for model Λ. If we

fix the Di of Λ to be open, we denote the model by Λi
+. If

we fix the Di to be closed, we denote it by Λi− . The
following equation is true.

 PL(Λ) = piPL(Λi

+) + (1 − pi)PL(Λi−) (3)

This equation can be obtained by the same logic used
to derive the factoring theorem in the reliability engineering
field [10].

We call the operation from Λi to Λi
+ and Λ − a

‘factoring operation’. An example of a factoring operation
is shown in Fig. 6. (from here on, the figures will
sometimes omit the arrows indicating the participants for
simplicity.)

Fig. 6. Example of factoring operation.

Eq. (3) implies that the problem to evaluate PL for Λ

reduces to problems of evaluating PL(Λi
+) and PL(Λi−). If

these reduced problems are still difficult to solve, then we
can apply the factoring operation to Λi

+ and Λ − . The
conceptual view of this repeated factoring is illustrated in
Fig. 7.

Fig. 7. Repeated factoring operations.

We call each model in this binary tree search a ‘stage’.
The factoring operation of this binary search stops if we

reach a stage satisfying either of the following stop
conditions:

Stop condition 1.
 We have no domain with k participants and an

intrusion gate connected.
Stop condition 2.

k participants and intrusion gate are not connected
even if all domains of the converted model of its stage
are assumed to be open.

 If a stage, denoted by Λ’, satisfies Stop condition 1,

then the hacker can aggregate k shares, and PL(Λ’) = 1 at
this stage. On the contrary, if Λ’ satisfies Stop condition 2,
then the hacker is not able to aggregate k shares, and PL (Λ’)
= 0 at this stage.

 Accordingly, if the binary tree search reaches a stage
satisfying either of the stop conditions, then no further
factoring operation of the model is necessary at this stage.

If we ignore Stop condition 2, then the computation
speed for PL(Λ) is obviously proportional to 2n and its
complexity is the same as that of the truth table algorithm.

Λ1
－

Λ
Participant

Participant D1 D2

D3

D2

D3

D1
D2

D3

Λ1
＋

(Λ1
＋) 2

－ (Λ1
－) 2

＋

Λ

Λ1
＋

(Λ1
＋) 2

＋

Λ1
－

(Λ1
－) 2

－

Λ

123

However, we can cut the size of the tree for the binary tree
search after finding stages satisfying Stop condition 2.
Therefore, an algorithm based on this idea is expected to be
faster than the truth table algorithm.

B. Procedure of Proposed Algorithm
The following recursive procedure for evaluating PL is

based on the idea of the previous subsection.

FACT()
INPUT: Λ
Step 1. If Λ satisfies Stop condition 1, then output 1 and end.
Step 2. If Λ satisfies Stop condition 2, then output 0 and

end.
Step 3. Select a domain Di randomly.
Step 4. Output piFACT(Λi

+) + (1-pi)FACT(Λi
−).

C. Motivational Example
Fig. 8 shows a motivational example, where p1 = p2 =

p3 = 0.01 and k = n = 2.

Fig. 8. Example of model.

In Steps 1 and 2 of FACT(), we can see that Λ satisfies

neither stop condition. In Step 3, for example, we select D2
to be factored and obtain Λ+ and Λ− as in Fig. 9.

Fig. 9. First factoring operation.

We find that Λ2

− satisfies Stop condition 2. Therefore,
we obtain PL(Λ2

−) = 0. On the other hand, Λ2
+ can be further

factored as in Fig. 10 if we select domain D1 in Step 3 in
the second loop.

Fig. 10. Second factoring operation.

We find that (Λ2
+)1

− satisfies Stop condition 2.
Therefore, we obtain PL(((Λ2

+)1
−) = 0, while (Λ2

+)1
+ can be

further factored as in Fig. 11.

Fig. 11. Third factoring operation.

We find that ((Λ2
+)1

+)3
+ satisfies Stop condition 1,

resulting in PL(((Λ2
+)1

+)3
+) = 1, and ((Λ2

+)1
+)3

− also satisfies
Stop condition 1, resulting in PL(((Λ2

+)1
+)3

−) = 1.Thus, we
have

PL = PL(Λ) = p2FACT(Λ2

+) + (1-p2)FACT(Λ2
−)

= p2{p1FACT(Λ2
+)1

+) + (1-p1)FACT(Λ2
+)1

−)} + (1-p2)
FACT(Λ2

−)
= p2[p1{p3FACT((Λ2

+)1
+)3

+ + (1-p3)FACT(((Λ2
+)1

+)3
－)}

+ (1-p2)FACT(Λ2
−)]

We have already found that FACT((Λ2

+)1
+)3

+) =
FACT(((Λ2

+)1
+)3

－) =1, FACT(Λ2
−) = 0, and we know that

p1 = p2 = p3 = 0.01.Therefore,

PL = p2 [p1{p3×1 + (1-p3)×1}] + (1-p2) ×0

 = 0.01×[0.01 ×{(0.01×1) + (1-0.01)×1}} = 0.0001.

If we apply the truth table algorithm, we must
enumerate 23 = 8 states. However, our proposal requires a
relatively compact form like the above.

V. NUMERICAL EXPERIMENTS

A. Environment
We implemented the truth table algorithm and FACT()

in the following environment:

 OS: Windows 10 Home
 CPU: Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz

2.70 GHz
 RAM: 8.00GB Language: C

B. Target Models
The network topology, domains, and participants are

illustrated in Fig. 12. The value of pi is 1.00×10-4 for every
domain. k = 2 and n = 3. There are three ways of assigning
intrusion gates to Fig. 12. These are illustrated in Fig. 13,
14, and 15.

Fig.12. Network topology and domains.

ΛΛ2+ ΛΛ2
−

((ΛΛ2
+)1

+)3
+ ((ΛΛ2

+)1
+)3

−

Participants

D1

D2

D3

ΛΛ

((ΛΛ2
+)1

+ ((ΛΛ2
+)1

−

Participant Participant Participant

124

Fig. 13. Pattern 1.

Fig. 14. Pattern 2.

Fig. 15. Pattern 3.

C. Results and Discussion
The results of the evaluation are listed below.
PL = 1.00×10-16 for Patterns 1 and 2. PL = 1.00×10-20 for

Pattern 3. The computation time for Pattern 1 was 118.84
seconds when we used FACT() and 4269.73 seconds when
we used the truth table algorithm. The computation time for
Pattern 2 was 114.88 seconds when we used FACT() and
4269.03 seconds when we used the truth table algorithm.
The computation time for Pattern 3 was 63.05 seconds
when we used FACT() and 4251.11 seconds when we used
the truth table algorithm.

The results indicate the followings.

1. The proposed algorithm is quite faster than the truth
table algorithm.

2. The security strength does not change if we reduce the
number of intrusion gates by up to a half.

3. However, the security strength becomes quite stronger
if we reduce the number of intrusion gates by more
than a half.

 Thus, the number of intrusion gates affects the security
strength.

 If we do not have stop conditions, then the
computational complexity of our algorithm is equivalent to
existing truth table method. However, if we can avoid one
execution of factoring at the stage that ω number of domain
are still not factored then 2ω number of leaves in our binary
tree of FACT() are successfully cut. If ω = 10, then 1024
number of leaves can be cut. That’s why, we can expect
that great reduction of computational complexity is realized
by our algorithm than truth table method not only for our
examples in this section but also in general cases.

VI. CONCLSION
This paper has proposed a new algorithm to evaluate

security strength for allocation of shares in the secret
sharing scheme. Key idea is to use binary tree search with
reasonable stop conditions. These stop conditions are
expected to effectively reduce the size of binary tree, and
computational complexity is estimated to become greatly
smaller than existing algorithm. Numerical examples give
evidences to support this estimation.

Future work will include more theoretical analysis of
computational complexity of our algorithm, a further
improvement of the algorithm, and new applications.

REFERENCES
[1] A. Shamir, “How to share a secret,” Communications

of the ACM, vol. 22, no. 11, pp. 612- 613, 1979.
[2] G. R. Blakeley, “Safeguarding cryptographic keys,”

AFIPS, vol. 48, pp. 313-317, 1979.
[3] N. A, Ebri et al., “Study on secret sharing schemes

(SSS) and their applications,” International Conference
on Internet Technology and Secured Transaction, pp.
40-45, 2011.

[4] P. Dharani et al., “Survey on secret sharing scheme with
deduplication in cloud computing,” ISCO, 15490813,
2015.

[5] R. H. Shar et al., “A multifactor authentication system
using secret splitting in the perspective cloud of
things,” International Conference on Emerging Trends
and Innovation in ICT, INSPEC Accession Number
17029175, 2017.

[6] D. Chen et al., “An efficient verifiable threshold multi-
secret sharing scheme with different stages,” IEEE
Access, vol. 7, pp. 107104 – 107110, 2019.

[7] L. Tan et al., “Weighted secret image sharing for a (k,
n) threshold based on Chinese remainder theorem,”
IEEE Access, vol. 7, pp. 2169-3536, 2019.

[8] T. Kuwabara et al., “Framework and solution for
assigning shares to communication network domains
under secret sharing scheme,” ITC-CSCC, pp. 330-335,
2020.

[9] A. Hineman et al., “A modified Shamir secret sharing
scheme with efficient encoding,” IEEE
Communications Letters, vol. 26, no. 4, pp. 758-762,
2022.

[10] L. B. Page et al., “A practical implementation of the
factoring theorem for network reliability,” IEEE Trans.
Reliability, vol. 37, no. 3, pp. 259-267, 1988.

125

