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Abstract—In typical air traffic control (ATC) scenario where it
is apparently challenging to deploy aircraft for special missions
as reconnaissance and surveillance, a proposed ACD-UKF model
becomes suitable especially where operational flexibility and
without manual aircraft-turning are prioritized objectives. In
this paper, novel deep neural network model (DNN) enhanced
accurate continuous-discrete unscented Kalman filtering (ACD-
UKF) model for a radar’s ordinary differential equation (ODE)
solver system navigation tool is presented. The ODE solver
system essentially works to control radar navigation parameters
with-respect-to (w.r.t) global error control, monitoring metrics
and tracking capabilities. With the proposed DNN scheme,
limitations resulting from matrix factorization are addressed.
A seven-dimensional (7-D) radar tracking drawback in con-
strained condition is mirrored, allowing the deployed aircraft to
conduct supervised turns using the proposed ACD-UKF model.
Performance evaluation was then conducted where real-time
factors such as the system’s outage thresholds, network sum-rate
and yaw differences for the global navigation satellite system
(GNSS) propelled aircraft radar tracker data-set, in stationary
and in accelerating positions were trained and validated using
the proposed DNN model.

Index Terms—Aircraft turns, DNN-based ACD-UKF,
IMU/GNSS, LSTM, ODE, yaw differences.

I. INTRODUCTION

The current GNSS-propelled radar technologies [1]-[3],
deployed for space-air-ground integrated network (SAGIN) [4]
systems have been widely investigated. The use of Kalman
filter (KF) models have provided dissimilar and nonlinear
results for guaranteeing global error control handling for
typical air traffic control systems. Advancements from basic
KF to continuous-discrete (CD) KF [5]-[10], (including the
cubature, extended and unscented Kalman filter models), pre-
sented up-scaled versions for SAGIN-reliant systems. In [5]-
[6], accuracy was achieved by using the third-degree spherical-
radial cubature rule, meant for Gaussian-weighted integral
computations. These computations are derived from nonlinear
discrete-time state-space stochastic KF approaches. In [7]-
[10], various approaches using the form (1) order were derived
and then implemented in diverse research areas.

Recent agile research works have further expanded major
existing models and replaced them with more ACD-KF mod-
els. These models are essentially derived from the EKF model
and are considered to be more robust and suitable for target
tracking, in comparison to the earlier models [11]. They are
structurally hinged upon a Runge-Kutta pairings. This work

capitalizes on the Runge-Kutta based EKF pairing with an
unscented part of the Mazzoni’s model (M2) [12], hence, form-
ing a hybrid accurate continuous-discrete unscented Kalman
filtering (ACD-UKF) computation model. With increased op-
timality ratios, this model evaluates predicted error covariance
matrix. This model has the capacity to deploy predicted state
mean with preassigned accuracy for guaranteeing automatic
global error control.

Since the existing ACD-UKF model is mainly deployed for
discrete stochastic environment [13]-[14], a summary of our
contributions in this paper are as follows:

• The existing approach is then extended into a stochastic
differential equation (SDE) model, where hybrid models
of the popular Runge-Kutta based EKF pairing with
unscented part of Mazzoni’s model (M2) is designed.

• Enhanced deep neural network (DNN) based long short-
term memory (LSTM) architecture is then proposed to
determine the time series for the ACD-UKF model action.

• The outage thresholds, network sum-rate and yaw differ-
ences for the GNSS-based aircraft radar tracker in station-
ary and in accelerating positions were further analyzed.

The rest of this paper is structured as follows. The de-
sign analysis, detailing inherent radar tracking problems is
discussed in section II. The proposed ACD-UKF model for
aircraft-turn-coordinated radar tracking is investigated in sec-
tion III. The system’s results and performance evaluation is
presented in section IV, while section V concludes this work.

II. PROBLEM FORMULATION

A. Aircraft-Turn-Coordinated Radar Tracking Problem
In typical aircraft trajectory dynamics, where a coordinated

turn in horizontal plane is commonly applicable, the stochastic
differential equation (SDE) rules are observed. The SDE rule
introduces a state vector which is deduced as follows:

X(t) := [x(t), ẋ(t), y(t), ẏ(t), z(t), ż(t), ω(t)]T ∈ R(7) (1)

where x(t), y(t), z(t), and ẋ(t), ẏ(t), ż(t) denotes its respec-
tive positions with corresponding velocities in the Cartesian
coordinates of time t. The almost constant turn rate is ω(t).
From the above vector illustration, the system’s drift rate can
now be deduced as:

F (.) := [ẋ(t),−ω(t)ẏ(t), ẏ(t), ω(t)ẋ(t), ż(t), 0, 0]T ∈ R(7)

(2)
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Fig. 1. A typical aircraft-based radar-to-air traffic control system architecture. The architecture depicts the three-way communication environment that exists
among the aircraft, the ATC and the radar/communication satellite.

where the stochastic noise term is 7-D with sequential entries
as: {ωi(t), t ≥ 0}, i = 1,..., 7. The entries are mutually
independent Brownian processes which are properly channeled
into the SDE process. This is important since unpredictable
errors resulting from turbulence and other climatic factors are
to be mirrored, leading to the derivation of diagonal matrix G:

G := diag[0, σ1, 0, σ1, 0, σ1, σ2] (3)

with limits of σ1 =
√
0.20, and limits of σ1 =

√
0.007.

B. Air Traffic Control Case-Study
In this part, air traffic control scenario measurement equa-

tion is depicted in nonlinear and discrete-time graph. These
core graphs are addressed using its measurement vector as:

Zk := [rk, θk, φk]
T ∈ R(3) (4)

and its measurement function:

h(.) :=




√
x2
k + y2k + z2k

tan−1(yk/xk)

tan−1(zk/
√
x2
k + y2k)


 ∈ R(3). (5)

where the coordinates xk, yk, zk are the aircraft’s position in
a time tk. These measurement equations is mirrored with the
radar position, equipped with range r, azimuth angle θ and
elevation angle φ, all at its origin. Therefore, a computation
of the measurement noise becomes vk ≈ N(0, R), where R
:= diag[σ2

r , σ
2
θ , σ

2
φ] and σr = 50, σθ = 0.1◦, and σφ = 0.1◦.

The illustrated air traffic case study is numerically processed
in time lapse 0 s ≤ 210 s, while the aircraft’s initial state is
pre-determined using the vector parameters deduced as:

X̄ := [1000m, 0m/s, 2650m, 150m/s, 200m, 0m/sω◦/s]T

(6)

where ω = 3,4.5,6. Then the initial covariance is taken to be
∏
0

:= [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]. (7)

The model is adjudged to higher optimality ratios, in compari-
son to all other exiting models. this was strongly corroborated

Fig. 2. Proposed system model with block diagrams showing the proposed
deployment of ACD-UKF model. The aircraft-turn-coordinated radar system
is embedded with the proposed ACD-UKF to manipulate the initial data
samplings from the air traffic control center. Our adaptive hybrid adaptive filter
applied to the INS/GNSS fusion process to tune the process noise covariance
matrix, . Both IMU and GNSS measurements are plugged into the INS/GNSS
filter, while the six IMU channels are also inserted into the DNN for predicting
the process noise covariance matrix.

owing to its robustness (hybridized model) and the ability
to allow for multiple and dissimilar number of SDE data
samplings. The system’s block diagram is illustrated in Fig. 1.

III. PROPOSED ACD-UKF MODEL

A re-calibration of the radar communication system protocol
is proposed. To achieve this, ACD-UKF model [15] is derived
by obtaining the discretized continuous-time system process.
The values obtained are then channeled into the additive zero-
mean noise case UKF as obtained in [16, Appendix B], to
successfully build (i) a novel square root model for ACD-
UKF version in Algorithm 1 to determine both the system’s
execution time and measurement updates in Algorithm 2. The
system’s (ii) parameter sub-vector and (iii) cross-covariance
matrix are further determined and obtained. Block diagrams
of the proposed ACD-UKF model as deployed in this work are
captured in Fig. 2. This is capitulated in the step-wise m-step
ACD-UKF approach.
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Fig. 3. Yaw differences for drones in constant velocity and averaging total of 20 filter runs where loss decrement w.r.t number of epochs and metrics increment
w.r.t number of epochs are depicted.

Algorithm 1: Time update in ACD-UKF modeling.

Start: Initial covariance square root
∏1/2

0 is derived.
Setting: P 1/2

0|0 :=
∏1/2

0 , x̂0|0 := x̄0, εg := 10−4.
Looping: For K := 1,2,...,K (where K is sampling

instants for SDE model (1) interval simulations).
Time update: Given that x̂k−1|k−1 and P

1/2
k−1|k−1,

compute predicted covariance matrix square root
P

1/2
k−1|k−1, and predicted state mean x̂k−1|k−1.

for εloc := ε
3/2
loc , τmax := 0.1, M := 1, do

1 �:=0, M:=0, τ0:=min{0.01, δ}, P 1/2
0 :=P 1/2

k−1|k−1,
x̂4
k−1|k−1, ∆x̂0:=0, |∆x̂|max:=0, t0:=tk−1;

2 While (t� < tk) & (|∆x̂�|sc ≤ 10εg) do;
3 t�+1 := t� + τ�, compute x̂4

�+1, x̂2,4
�2 in (8) and the

scaled error local error |�e�+1|sc in (9) and (10);
4 τ∗� := min{1.5, 0.8(εloc/|�e�+1|sc)1/3}τ�;
5 If |�e�+1|sc ≥ εg , then τ� := τ∗� ; else do;
6 Evaluate the error |∆x̂�+1|sc in (11) and (12);
7 |∆x̂|max := max{|∆x̂|max, |∆x̂�+1|sc};
8 If |∆x̂�+1|sc � εg , then M := 1;
9 If M = 0, then do;

10 The Cholesky decomposition equation is applied,
where: Q�+1/2 = Q

1/2
�+1/2 ∗ Q

T/2
�+1/2;

11 Compute P
1/2
�+1 in (14),(15); end{then};

12 τ�+1 := min{τ∗� , tk - t�+1, τmax};
13 � := � + 1;

End{else};
End{while};

14 If M = 1, then εloc := (0.8εg/|∆x̂|max)3/2εloc;
End{while};

15 Stop

Fig. 4. The RMSE variations of the proposed deep neural network (DNN)
versus the input length (N)

A. DNN-based ACD-UKF Square-root Filtered Algorithms

The popular recurrent DNN approach is investigated. In
particular, the long short-term memory (LSTM) architecture
to determine the time series data in Algorithm 1 is deployed.
During the training phase the DNN learns the optimal weights
of the kernels. The GNSS position updates are employed
to aid the INS [17] and demonstrate our hybrid learning
approach. Applying the suggested adaptive tuning approach
in online setting involves integrating the INS/GNSS with the
regressor as depicted in Fig. 2. The numerical outcome in
this section buttressed the solution vector x̂4

L and matrix
P

1/2
L the subscript L marks the last node in the generated

mesh {t�} (i.e., tL ≡ tk), are taken as the output of our
proposed ACD-UKF solver applied to MDEs (2), (3) for
calculating the predicted state expectation and the predicted
covariance matrix square root with the scaled global error
not exceeding εg . Extension of these limitation is observed
in the proposed tightly-fixed GPS/IMU-enabled drones, where
negligibility of cross covariance matrix causes smaller Kalman
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Algorithm 2: Measurement update in ACD-UKF
Start: Predicted state mean x̂k|k−1 and predicted
covariance square root P 1/2

k|k−1 are obtained.

Setting: P 1/2
0|0 :=

∏1/2
0 , x̂0|0 := x̄0, εg := 10−4.

Looping: For when sets of 2n cubature nodes ξi are to
be created.

Measurement update: Given that x̂k|k−1 and P
1/2
k|k−1,

compute predicted covariance matrix square root
P

1/2
k|k−1, and predicted state mean x̂k−1|k−1.

1 For when sets of 2n cubature nodes ξi are created.

ξi :=

{ √
ne� where i = 1, ..., n,

1
√
ne�−n where i = n+ 1, ..., 2n

2 The aircraft’s sub-vectors are then determined as:
ςi,k|k := x̂i,k|k + P

1/2
k|k−1ξi, i = n+ 1, ..., 2n.

3 Sub-vector (1) is transformed with the function h(.) as:
ηi,k|k := h(ςi,k|k), i = n+ 1, ..., 2n

4 The predicted measurement update is then estimated
using: ẑi,k|k := 1

2n

∑2n
i=1 ηi,k|k

5 To obtain the measurement noise covariance square
root R1/2

k , the Cholesky decomposition equation is
applied, where: Rk = R

1/2
k ∗RT

k ;
6 Further compute the followings:

Covariance matrix P̄xz,k, Innovations covariance
square root R1/2

e,k , and Filtering covariance matrix
square root P 1/2

k|k , thus:[
χk|k−1 R

1/2
k

Zk|k−1 0

]
∗Θk =

[
R

1/2
e,k 0

P̄xz,k P
1/2
k|k

]
.

where weighted-centered matrices of size n × 2n are:
χk|k−1 =
1√
2n

∗ [ς1,k|k−1 − x̂k|k−1, ..., ς2n,k|k−1 − x̂k|k−1].
Zk|k−1 =

1√
2n

∗ [η1,k|k−1 − ẑk|k−1, ..., η2n,k|k−1 − ẑk|k−1].
7 Then proceed to determine the Continuous-discreet

cubature gain matrix Wk = P̄xz,k ∗ R
−1/2
e,k .

8 Conclusively, the filtering state mean k̂|k is determined
at the next sampling time tk using the equation: x̂k|k
= x̂k|k−1 + Wk(zk - ẑk|k−1).

9 Stop

gain thereby, limiting convergence speed. The flexibility of this
approach at adopting different state’s estimation for the two
introduced sub-vectors implies its capability at multi-updating,
guaranteeing estimation accuracy and further ensuring that the
computational loads are kept at barest minimum.

IV. PERFORMANCE EVALUATION AND DISCUSSION

The deployed DNN based ACD-UKF model was trained
using datasets obtained in Section III-A. After atleast 20 to
30 epochs, the system achieved an root-mean-square-error
(RMSE) value of between 0.04 for the train and 1.0 for the
metrics. Output results in Fig. 3 illustrates the loss decrement
versus the number of epochs and the metrics increment versus

TABLE I
SIMULATION PARAMETERS

Parameter Values

Drone transmitting power 30 dBm
Drone noise power σ -80 dBm
Path-loss exponent α 3
Rician factor K 0, 5, 10 dB
SNR threshold ϑ 0, 5, 10 dB
Frequency range ≤ 30 KHz
Sound’s speed range 1500m/s
Coverage area 1250 m
Propagated energy 0.5 Watt

number of epochs. The result stipulates that with faster and
higher metrics of 0.04 or above, while keeping losses at
barest minimal 20.0 or below, the better will be the system
model. This improvement also demonstrates the robustness and
generalization properties of the proposed DNN architecture,
enabling it to cope with unseen data from different IMU
sensors. In addition, and together with the trained data-set
results, it proves our hypothesis of regressing only the first
six elements in the diagonal of the continuous process noise
covariance. Although demonstrated for quadrotor INS GNSS
fusion, the proposed approach can be elaborated for any
external sensor aiding the INS and for any type of platform.

In Fig. 4, result show that the INS/GNSS fusion is mostly
performed under realtime conditions, where latency in the
position computation might degrade the performance. Thus,
the influence of the IMU sequence length input was examined.
The system noise covariance matrix was learned, based on
series of length N. As N ¿¿ 1, the probability of learning
the correct terms grows, since the DNN can capture the
signal intrinsic properties easier using more data; however,
the latency grows. Considering this trade-off, we trained the
chosen architecture with various N values and calculated
the root-mean-square-error (RMSE) as shown in Fig. 4. As
expected, N = 400 obtained the minimum RMSE, yet for the
rest of the analysis we chose N = 200 (similar RMSE) to
receive the regression result as it is given in a shorter time
period. For example, in the stimulative train and test dataset
the sampling rate is 100Hz, thus working with N = 200 gives
the regression result every two seconds instead of working
with four seconds (N = 400).

V. CONCLUSION

A seven-dimensional (7-D) radar tracking drawback in
critical environmental condition is examined, allowing the de-
ployed aircraft to conduct supervised turns using the proposed
ACD-UKF model. Since it is challenging to deploy aircraft
for such purpose, novel ACD-UKF model was promoted.
The proposed ACD-UKF becomes suitable and possessing
key beneficial features such as operational flexibility, without
manual aircraft-turning for typical ATC scenario. Other key
inherent ACD-UKF features as demonstrated are its ability
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at conducting and successfully processing dissimilar radar-to-
ATC initial data sampling, and doing so in multiple time-
lapses. As part of our future works, we intend to capitalize
on the existing model to harness more energy-reliant scheme.
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