
Efficient UAV/Satellite-assisted IoT Task Offloading:
A Multi-agent Reinforcement Learning Solution

Kangjia Yu1, Qimei Cui1, Ziyuan Zhang1, Xueqing Huang2, Xuefei Zhang1, Xiaofeng Tao1
1National Engineering Lab for Mobile Network Technologies, Beijing University of Posts and Telecommunications, 100876

2New York Institute of Technology, Old Westbury, NY, 11568
{yukangjia, cuiqimei, zzy1022, zhangxuefei, taoxf}@bupt.edu.cn, xhuang25@nyit.edu

Abstract—In the future mobile edge networks, the Internet of
things (IoT) applications will be latency-sensitive and computa-
tionally intensive. Given the resource limitation of IoT devices,
mobile edge computing (MEC) servers are critical to support the
efficient processing of IoT tasks. Since MEC servers attached to
the ground base stations are generally deployed in fixed locations
and vulnerable to physical damage, the unmanned aerial vehicle
(UAV) and satellite-assisted MEC framework has been proposed
to leverage the flexibility of UAVs and the broad coverage
of satellites. However, efficient utilization of the UAV/satellite
resources is challenging for the static ground IoT devices because
of the dynamic in terms of aerial and space network topology and
IoT task arrival rates. To adapt to the changing environment and
utilize the interaction among multiple UAVs, we propose a multi-
agent deep deterministic policy gradient (MADDPG) framework
to jointly optimize the traveling routes of multi-UAVs and the
offloading decision of IoT devices. To minimize the processing
cost in terms of task processing latency and energy consumption
of IoT devices, cooperative UAVs can help find the optimal
task offloading location for each IoT device. Simulation results
show the proposed algorithm based on MADDPG can averagely
decrease 20% of the above processing cost compared with the
benchmark approach.

Keywords—UAVs, Satellite, IoT devices, MEC, Task offloading,
MADDPG

I. INTRODUCTION

With the widespread of IoT applications, mobile data traf-
fic will continue to grow and the generated IoT tasks will
be latency-sensitive and computationally intensive. With the
advantage of distributed computing and low latency, mobile
edge computing (MEC) has been proposed to enhance IoT
devices with limited resources [1]. However, MEC servers
deployed on the fixed ground station cannot flexibly change
locations according to the needs of mobile users. In addition,
the edge servers will be dysfunctional after partial or complete
infrastructure damage caused by natural disasters.

The space-air-ground integrated network (SAGIN) assisted
by satellite and unmanned aerial vehicles (UAVs) emerges as a
promising architecture to provide a wide range of coverage and
computing offloading services for remote IoT devices. UAVs
and satellites can well relieve the traffic pressure brought by
the surge and uneven distribution of mobile data and make up
for the shortage of ground stationary networks. The deploy-
ment of UAVs and satellites brings several challenges, includ-
ing trajectory design, power allocation, and energy efficiency.
There exist plenty of mathematical optimization-based works

that try to solve these problems for SAGIN. For instance, to
minimize the energy consumption of the UAV-enhanced MEC
system, a low complexity fuzzy c-means clustering algorithm
was proposed to jointly schedule the user association, power
control, computing capacity allocation, and location of UAVs
[2]. Meanwhile, the number and location of UAVs have been
optimized by the differential evolution algorithm with an
elimination operator to reduce the dimensionality of the search
space [3]. A spaceborne MEC network resource allocation
strategy was designed to leverage low-orbit satellites as edge
nodes and provision low-latency computing services for access
terminals [4].

Since the location of UAVs and the computing resources
demands of IoT devices change rapidly in the SAGIN-assisted
MEC system environment, it is challenging to obtain global
information and construct a mathematical optimization model.
As a result, reinforcement learning (RL) has been adopted to
adjust the location of MEC servers without requiring prior
knowledge of the system [5]. For remote IoT devices deployed
in the SAGIN edge/cloud framework, a deep reinforcement
learning-based computing offloading method was used to min-
imize the weighted summation of server usage cost, energy
consumption, and latency [6]. By considering the dynamic
arrival of tasks to edge servers, a risk-sensitive reinforcement
learning algorithm was designed to obtain a task scheduling
policy that minimizes the task offloading and computational
latency under the energy constraints of UAV [7]. However,
the above works only consider the scenario of a single UAV
and when training in a multiagent environment, the dynamic
changes of other agents violate the Markov assumptions re-
quired for RL convergence.

For the system scenario with remote IoT devices assisted by
multiple UAVs and satellites, we aim to minimize the system
processing cost in terms of task processing latency and energy
consumption of IoT devices. To adapt to the ever-changing
environment and utilize the interaction among multiple UAVs,
a multi-agent deep deterministic policy gradient (MADDPG)
framework is proposed to jointly optimize the UAV locations
and the offloading decision of IoT devices. With the proposed
framework, cooperative UAVs can help find the optimal lo-
cation to which the IoT devices can offload their computing
tasks. As compared with the benchmark approach, simulation
results show that on average, the proposed MADDPG-based
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algorithm can decrease the processing cost by 20%.

II. SYSTEM MODEL

For the remote area shown in Fig. 1, we consider a mobile
edge computing system assisted by M UAVs and a satellite.
Each UAV in the set M = {1, · · · ,M} carries a MEC
server and hovers at a height of H above the square with
lmax side length. In addition, a low-orbit in space satellite
carrying a cloud server can cover the entire area. A set of
N = {1, · · · , N} IoT devices are randomly deployed in the
area. For the discrete-time system with T = {1, · · · , T} time
slots, each IoT device will generate a computing task at each
time slot t, t ∈ T .

UAV 1

MEC Server

Cloud Server

IoT Device

Satellite IoT-Satellite link

IoT-UAV link

MEC ServerUAV 2

UAV  Route 

Fig. 1. UAV/Satellite-assisted computing tasks offloading framework.

The resource-limited IoT devices can offload their comput-
ing tasks to UAVs and satellite. For each IoT device, we define
M′ = {0, · · · ,M +1} as the set of potential locations where
the computing tasks will be processed. If the location index
m ∈ M′ is equal to zero, there is no offloading, i.e., local
processing. Meanwhile, m = M + 1 indicates offloading to
the satellite. Other values of m imply offloading to a UAV.
Then, at the t-th time slot, the binary decision variable for
IoT device n, n ∈ N , can be defined as follows.

αn,m,t ∈ {0, 1} , ∀n ∈ N ,m ∈ M′, t ∈ T (1)

where αn,m,t = 1, m ∈ M, means the tasks generated by the
n-th device will be processed at the m-th UAV. Moreover, we
assume that each task can only be processed in one location.

∑
m∈M′

αn,m,t = 1, ∀n ∈ N , t ∈ T (2)

To find the optimal offloading decision such that the latency
experienced by IoT devices and the energy consumed by
IoT devices are minimized, the UAV traveling model, the
IoT device-UAV/satellite communications model, and the data
processing models are introduced next, which are followed by
the formalized joint UAV traveling and IoT task offloading
optimization problem.

A. UAV Traveling Model

During each time slot t, UAVs move at a fixed distance of
5 m towards the flight direction, which is defined by the angle
βm,t ∈ [0, 2π) . At the beginning of the t-th time slot, we
denote (Xm,t, Ym,t, H) as the three-dimensional coordinates
of the m-th UAV. The Euclidean distance between two UAVs
will be Rm,m∗,t.

Rm,m∗,t =

√
(Xm,t −Xm∗,t)

2
+ (Ym,t − Ym∗,t)

2
, (3)

where the inter-UAV distance has to be greater than Rmin to
avoid a collision.

Rm,m∗,t ≥ Rmin, ∀m,m∗ ∈ M,m �= m∗. (4)

Suppose the coordinate of the n-th IoT device is (xn, yn, 0),
then at time t, the horizontal distance between device n and
UAV m is defined as:

Rn,m,t =

√
(Xm,t − xn)

2
+ (Ym,t − yn)

2
. (5)

If the computing task generated by IoT device n is to be
offloaded to UAV m for processing, the IoT device must be
within the service area covered by the UAV.

αn,m,tRn,m,t ≤ Rmax, ∀n ∈ N ,m ∈ M, t ∈ T , (6)

where Rmax is the coverage radius of each UAV.

B. Data Transmission Model

For the communication link between the ground IoT device
and the UAV, only large-scale fading is considered. At time
slot t, the path loss between IoT device n and UAV m is:

LH
n,m,t = 20 log(

4πfc

√
H2 +Rn,m,t

2

c
)+

PLoSηLoS + (1− PLoS)ηNLoS ,

(7)

where ηLoS and ηNLoS represent the additional losses caused
by the line-of-sight (LoS) link and non-line-of-sight (NLoS) on
top of the free-space path loss, respectively. fc in the numerator
is the carrier frequency while c in the denominator is the speed
of light. PLoS is the probability of LoS transmission of the
link, which is defined as follows.

PLoS =
1

1 + a exp
(
−b

(
arctan

(
H

Rn,m,t

)
− a

)) , (8)

where (a, b, ηLoS , ηNLoS) are constants depending on the
environment. In remote areas, they are generally set as
(4.88, 0.43, 0.1, 21) [8].

Since multiple tasks from different IoT devices might be
offloaded to the same UAV, to avoid transmission interference,
we assume orthogonal frequency division multiple access
(OFDMA) is adopted to support the IoT device-UAV com-
munications [9]. The resulting uplink data transmission rate
between IoT device n and UAV m is given below.

rn,m,t = Blog2(1 +
PnU × 10−LH

n,m,t/10

σ2
o

), (9)
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where B is the transmission bandwidth, PnU represents the
transmit power from the IoT device to the UAV, σ2

o represents
the power of the background noise.

For the IoT device to satellite communications link, we
assume a constant data transfer rate rnS [10], which is usually
less than the data transfer rate of the IoT-UAV link rn,m,t.

C. Computing Task Processing Model

For the above system, at time slot t, suppose the n-th IoT
device generates a task In,t = (Cn,t, Dn,t), where Cn,t refers
to the number of CPU cycles required to calculate each bit
(Cycles/bit), and Dn,t indicates the size of the task’s input
data. As compared with the input data size, the size of the
output of the task is assumed to be negligible.

There are three processing models for task In,t: 1) local
processing (αn,0,t = 1); 2) offload to UAV for processing; 3)
offload to satellite for processing (αn,M+1,t = 1). The latency
and energy consumption in the three models are detailed below.

1) Local Processing Model: The task In,t is to be processed
locally on the n-th IoT device, and the time required to
complete the computing task is defined as follows.

Tn,0,t =
Cn,tDn,t

fL
, (10)

where fL [in cycle/s] is the operating clock frequency of each
IoT device.

The local energy consumption required to compute this task
is defined as:

En,0,t = η1(fL)
v−1

Cn,tDn,t, (11)

where η1 = 10−27 is the effective switched capacitor, and
v = 3 is a constant.

2) UAV Processing Model: The task In,t is first transmitted
to the UAV and then processed by the MEC server on the UAV.
The time required by completing the task includes input data
transmission time and processing time.

Tn,m,t =
Dn,t

rn,m,t
+

Cn,tDn,t

fU
, (12)

where the fU is the operating clock frequency of each UAV
and the task retrieval time is not considered because of the
small output data.

The local energy consumed by this task is mainly for input
data transmission:

En,m,t = PnU
Dn,t

rn,m,t
, (13)

3) Satellite Processing Model: Owing to the long distance
between IoT devices and the low-orbit satellite, the prop-
agation delay tw is not negligible. The time required by
offloading the task to the cloud includes data transmission
time, processing duration time and propagation delay, which
is defined as:

Tn,M+1,t =
Dn,t

rnS
+

Cn,tDn,t

fS
+ 2tw, (14)

where rnS is the data transmission rate between IoT device
and satellite, and fS is the operating clock frequency of the
satellite. The propagation delay tw is doubled because both
the data transmission to the satellite and result retrieval from
the satellite are considered.

The local energy consumed by this task is also mainly for
input data transmission:

En,M+1,t = PnS
Dn,t

rnS
, (15)

where PnS represents the transmission power from the n-th
IoT device to satellite.

D. Problem Formulation of Joint UAV Traveling and IoT Task
Offloading

The goal of this paper is to minimize the processing cost
of all tasks, which is the weighted sum of (1) the latency
of all tasks and (2) the energy consumption of all local IoT
devices. Then, the corresponding joint optimization problem
of UAV traveling and IoT task offloading can be formulated
as follows:

min
{αn,m,t,βm,t}

∑
t∈T

∑
m∈M′

∑
n∈N

αn,m,t(ωTTn,m,t + ωEEn,m,t)

(16)
s.t. (1), (2), (4), (6)

C1 : 0 ≤ Xm,t ≤ lmax,∀m ∈ M,t ∈ T
C2 : 0 ≤ Ym,t ≤ lmax,∀m ∈ M,t ∈ T ,

where wT and wE are the weighting factors of latency and en-
ergy consumption respectively which are determined according
to the requirement of specific scenario. The newly introduced
constraints C1-C2 limit UAVs to the target area; Note that
although βm,t does not directly appear in the objective function
or the constraints, it will determine the location of each UAV
at each time slot, and hence impact the data rate and final task
processing cost.

Since the optimization problem in Eq. (16) involves a mix
of discrete and continuous decision variables: αn,m,t is binary
while βm,t is continuous, it is difficult to solve this NP-hard
problem with mathematical optimization methods. Moreover,
each UAV has to derive the optimal action in terms of setting
the values for βm,t, without prior knowledge of the locations
and actions of other UAVs. Therefore, this paper introduces
a distributed reinforcement learning-based algorithm named
the multi-agent deep deterministic policy gradient (MADDPG)
scheme to solve this problem [11].

III. MULTI-AGENT REINFORCEMENT LEARNING BASED
TASK OFFLOADING ALGORITHM

For the proposed UAV/satellite-assisted computing task of-
floading framework, to simply the system model and obtain the
optimal decisions (βm,t and αn,m,t), the UAV traveling route
design and IoT task offloading are decoupled. In particular, a)
each UAV m needs to first decide the flight direction; b) once
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the locations of all the UAVs are determined, each IoT device
n can compare all the possible offloading locations and choose
the one with the minimum processing cost.

A. UAV Traveling Path Design

To solve the core problem of the proposed framework, i.e.,
trajectory design of UAVs, the MADDPG algorithm is adopted
with its ability to solve complex optimization problems via the
cooperation of UAVs. As compared with the traditional rein-
forcement learning algorithms, where each UAV agent makes
decisions according to the changing environment, MADDPG
also considers the influence of each agent’s action on others.

At time slot t, each UAV agent will observe the environment,
take an action, and receive a reward. The details of observation,
action, and reward are defined as follows.
1) Observation sm,t: The observation includes the coordinates
of the UAV m, the location and the generated tasks of IoT
devices. In addition, the pair-wise distance among UAVs is
included as part of the observation to avoid collisions.
2) Action am,t: The action is defined as am,t = βm,t, which
represents the flight direction of UAV m at the t-th time slot.
3) Reward rt: Considering time delay and energy consumption
comprehensively, the reward function is defined as:

rt =
1

1
N

∑
m∈M′

∑
n∈N

αn,m,t(ωTTn,m,t + ωEEn,m,t)
− p, (17)

where p is the penalty that will be imposed if UAVs fly out
of the target area or collide with other UAVs. The reward is
inversely proportional to the total processing cost.

Note that since MADDPG guides every agent to choose
an action that is beneficial to the whole system rather than
itself, every UAV m shares the same system reward rt in Eq.
(17). Meanwhile, in a multi-agent learning system, the state
transition of the environment depends on the joint behavior of
the agents. Consequently, the overall system state is defined
as st = {sm,t, ∀m ∈ M} and an overall system behavior is
at = {am,t, ∀m ∈ M}.

To maximize the cumulative discounted reward∑
t∈T γt−1rt, with γ being the discount factor, MADDPG

will construct four networks for each agent: a critic network,
an actor network, and their corresponding target networks in
Fig. 2 [12].
1) Critic network Qm(st, at): the inputs of the critic network
are a mini-batch of samples from the replay buffer, and the
output is the estimated Q value of the current state and the
corresponding action. The loss function of the critic network
is calculated by

L(θQ
m

) =

E
[(

Qm
(
st, at|θQ

m
)
− rt − γQm′

(
st+1, at+1|θQ

m′)2
)]

,

(18)

where θQ
m

and θQ
m′

represents the parameters of the Qm and
the target network Qm′

.

Environment

Actor Critic
Optimizer

Critic network
abc

Actor network
abc

Target network
abc

Optimizer

Target network
abc

Replay Buffer B Mini-Batch

Policy
Gradient

Soft update Soft update

Loss
Function

Gradient

Random
Sample

Fig. 2. The network structure of MADDPG.

2) Actor network µm(sm,t): At each time slot t, the input
of actor network is the observation sm,t, and the output is
the action am,t chosen by the deterministic policy µm. The
gradient of the expected reward for UAV m is given below.

∇θµmJ = E
[
∇θµmµm

(
sm,t|θµ

m
)
∇am,t

Qm
(
st, at|θQ

m
)]

,

(19)

where the θµ
m

represents the parameters of policy µm.
3) The target network am,t+1 = µm(sm,t+1) and
Qm(st+1, at+1): the parameters of the target networks are
updated by

{
θµ

m′

← τθµ
m

+ (1− τ)θµ
m′

,

θQ
m′

← τθQ
m

+ (1− τ)θQ
m′

,
(20)

where τ is the learning rate.
4) The replay buffer Bm stores the agent’s training experience.
At each time slot t, the tuples {st, at, rt, st+1} are saved in
the Bm so that in training mode, the critic network can be
updated by sampling a random mini-batch.

B. IoT Task Offloading

For each IoT device n, the optimal offloading decision at
time slot t is given below.

αn,m,t =

{
1,m =argmin

m∈M′
{ωTTn,m,t + ωEEn,m,t}

0, else.
(21)

The details of the proposed MADDPG-based UAV traveling
route and IoT task offloading optimization are illustrated in
Algorithm 1.

IV. SIMULATION RESULTS AND ANALYSIS

In this section, simulations are conducted to demonstrate the
effectiveness of the proposed MADDPG algorithm in terms of
reducing the processing latency and energy consumption.

A. Simulation Settings

We set M = 2 UAVs flying above the 100 × 100 m2

target area to serve N IoT devices, which belongs a set of
{15, 20, ..., 40}. The initial coordinates of the UAVs are set
at two opposite corners. In terms of neural network structure
for both actor and critic networks, two fully connected hidden
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Algorithm 1 The MADDPG-based UAV traveling route and
IoT task offloading optimization

1: for UAV m ∈ M do
2: Initialize actor network µm(·), critic network Qm(·), the

Initial parameters are θµ
m

and θQ
m

;
3: Initialize target actor network µm′

(·), target critic net-
work Qm′

(·), the initial parameters are θµ
m′

and θQ
m′

;
4: Initialize experience replay buffer Bm;
5: end for
6: for Episode = 1 to 5000 do
7: for UAV m ∈ M do
8: Initialize observation sm,t;
9: end for

10: for timeslot t ∈ T do
11: Get state st;
12: for UAV m ∈ M do
13: Perform action am,t = µm

(
sm,t|θµ

m)
;

14: end for
15: Update at;
16: for IoT devices n ∈ N do
17: Calculate Tn,m,t and En,m,t;
18: Obtain the offloading decision αn,m,t according to

Eq. (21)
19: end for
20: Get reward rt;
21: for UAV m ∈ M do
22: Get sm,t+1;
23: end for
24: Get st+1;
25: for UAV m ∈ M do
26: Store {st, at, rt, st+1} into experience replay

buffer Bm;
27: if Training mode then
28: Draw K samples from Bm;
29: Update critic network, actor network and target

networks according to Eqs. (18)-(20), respec-
tively.

30: end if
31: end for
32: end for
33: end for

layers with 256×256 neurons are used. The actor network and
critic network are trained with a learning rate of τ = 0.001.
The Adam optimizer is used to update the actor and critic
network. Other important simulation parameters are listed in
Table I.

To verify the performance of the proposed MADDPG on
UAV path optimization, the following two schemes are adopted
for performance comparison, where both schemes adopt the
same IoT task offloading policy as in Eq. (21).

1) Random route: Each UAV randomly selects the flight
direction within [0, 2π), and the UAVs are limited to flying
within the target area.

TABLE I
SIMULATION PARAMETERS

Parameter Value Parameter Value
N {15, 20, ..., 40} σ2

o 10−12 Watt
M 2 fL 200 MHz

lmax 100 m tw 20 ms
Rmax 20 m Bm 106

Rmin 1 m K 1024
H 50 m τ 0.001
B 1MHz p 2

PnU 0.1 Watt T 50
PnS 0.5 Watt η1 10−27

Cn,t [1500,2000] Cycles/bit γ 0.95
Dn,t [10,15] Kb fS 5 GHz
fU 1 GHz rnS 5 Mb/s

2) Circle route: The two UAVs each circle a half square
field and fly in a circle.

B. Simulation Results Analysis
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Fig. 3. The loss and reward of UAV 1 (N = 15).
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Fig. 4. The loss and reward of UAV 2 (N = 15).

The training curves of MADDPG for two UAVs are depicted
in Figs. 3 and 4. In particular, as training continues, the losses
of both the actor and critic network of two UAVs gradually
decrease and finally reach convergence. The cumulative reward
obtained by MADDPG remains at a low level when the train-
ing begins, and even appears negative and fluctuates greatly.
The reward increases from the 1000-th step, and after about
1500 steps, the curve reaches around 1 and converges steadily.

Fig. 5 shows the travel routes of two UAVs under the
guidance of the proposed MADDPG algorithm, where the blue
dots represent the locations of 15 IoT devices, the stars and
triangles represent the travel routes of UAV 1 and UAV 2,
respectively. As can be seen from this figure, the UAVs move
within the target area and find the optimal location to reduce
latency and energy consumption. Additionally, we can see that
each UAV covers a specific area cooperatively to maximize the
defined reward.
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Figs. 6 and 7 show the trends of total energy consumption
and total latency with the number of IoT devices. It can be seen
that with the increase in the number of IoT devices, both the
total energy and total latency increase linearly. The proposed
MADDPG has the best performance, followed by the random
route, and the circle route has the worst performance.
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As compared with the circle route, the energy consumption
and latency of the proposed algorithm are reduced by an
average of 20%. This is because after training, MADDPG
assists the UAVs to cooperatively serve IoT devices, and more
IoT devices can offload their tasks to the UAV, which will
yield less energy consumption for all IoT devices.

V. CONCLUSION

In this paper, we propose a UAV/satellite-assisted mobile
edge computing framework, in which multiple UAVs fly over
the target area with different trajectories to provide support for

the IoT devices on the ground. To adapt to the dynamic en-
vironment and utilize the interaction between multiple UAVs,
MADDPG is adopted to jointly optimize the traveling routes
of UAVs and offloading decisions of IoT tasks. The simulation
results verify the convergence of the proposed algorithm and
the effectiveness of MADDPG in the multi-UAV path plan-
ning process. As compared with the random route and circle
route, the proposed MADDPG algorithm can decrease 20% of
latency and energy consumption for IoT devices. The scheme
proposed in this paper can help IoT devices process latency-
sensitive and computationally intensive tasks efficiently. It also
lays the foundation for the design and building of future IoT
networks.
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