
Analysing Attackers and Intrusions on a
High-Interaction Honeypot System

1st Mandy Knöchel
Institute for Computer Science

Martin Luther University Halle-Wittenberg
Halle (Saale), Germany

mandy.knoechel@informatik.uni-halle.de

2nd Sandro Wefel
Institute for Computer Science

Martin Luther University Halle-Wittenberg
Halle (Saale), Germany

sandro.wefel@informatik.uni-halle.de

Abstract—Attackers and malware are a major threat to the
growing number of servers and devices on the internet. Therefore,
it is essential to study characteristics of malicious activities which
can be used to aid future security mechanisms in finding and
preventing these threats. Honeypots are a powerful tool to get
insight into current attack techniques, malware and botnets. In
this paper, we present our findings from observing the behaviour
of attackers on a high-interaction Linux honeypot. We focused
on attacks targeting the SSH service and analysed all steps of the
intrusions, starting from the initial dictionary attack and leading
to the final intrusion executing commands or malware on the
honeypot. Further, we present our approach on how to decrypt
and analyse the encrypted network traffic.

Index Terms—Security, Honeypot, Malware, SSH

I. INTRODUCTION

Attackers and malware are a major threat to the continu-
ously growing number of devices and servers on the Internet.
In order to design and improve defence mechanisms, it is
essential to gain insight into current techniques and malware
used by attackers. To get an overview of common threats
and to research attack methods or malware, honeypots are a
powerful tool used by researchers and security practitioners.
Honeypots are systems that are intentionally designed to be
vulnerable in order to attract attackers and observe their
behaviour on the system. Based on the level of interaction
possibilities, one can distinguish between low, medium and
high interaction honeypots [1]. Low- and medium-interaction
honeypots are typically programs that simulate specific ser-
vices and offer attackers only restricted interaction options.
On the other hand, high-interaction honeypots are real systems
that offer the full range of capabilities of the operating system
and its applications. High-interaction honeypots provide the
best insight into an attack, but also pose the greatest risks,
as attackers have access to a fully functional server. Thus,
additional security measures must be taken to prevent the
honeypot from being used to attack other systems.

Though simple in concept, brute force attacks are still one of
the most common types of attacks. Here, attackers try a large
number of different username/password combinations in order
to gain access to a service. One reason is that many devices,
especially the growing number of IoT devices, still employ
weak or default login credentials [2]. Compromised systems
are often used as part of a botnet for Denial-of-Service attacks

(DoS), spamming or cryptocurrency mining [3]. Due to its
widespread use, the SSH protocol has become a popular target
for these kinds of attacks. SSH is used on many systems for
remote administration and file transfer. Its encryption makes
it a secure alternative to unencrypted protocols such as Telnet
or FTP, but also allows attackers to bypass traditional security
software like IDS that inspects incoming traffic.

In this paper, we present our findings from observing
attackers on a high-interaction honeypot. For our study, we
collected network traffic of attacks targeting the SSH protocol
to gain insight into current attack techniques and malware.
We will show statistics about dictionary attacks, the origin of
attackers and which tools, commands and malware are used by
the attackers. Further, we used a new approach to decrypt the
collected network traffic. This allows us not only to analyse
the attackers’ behaviour during these attacks, but also makes
it possible to use the collected data to train machine learning
models in the future.

II. HONEYPOT SETUP

To collect data from attacks we use a high-interaction
Linux honeypot that runs in a virtual machine with a Debian
Jessie operating system located in our university network
in Germany. All incoming and outgoing connections of the
honeypot are routed through a monitoring server, that records
the network traffic as pcap files as well as controls and restricts
outgoing connections to prevent attacks originating from the
honeypot. Incoming connections are allowed to pass through
unhindered. All data is further analysed on an Elasticsearch
cluster. To lure attackers to the honeypot, an OpenSSH server
with 5 different user accounts with weak passwords (the root
account and 4 unprivileged accounts: guest, test, support,
admin) was set up as an attack target. The passwords of
the user accounts were changed regularly to attract different
attackers to the honeypot.

Due to the encryption of SSH and HTTPS connections, it
is usually not possible to inspect these connections on the
monitoring server. To address this issue, most other works use
modified SSH server [4], [5], modified Linux kernel [6] or
Virtual Machine Introspection [7] to record login attempts and
activities on the honeypot. However, these approaches make
it impossible to decrypt individual network packets. In order

433978-1-6654-9927-9/22/$31.00 ©2022 IEEE APCC 2022

to preserve the correlation between the observed activities
and the encrypted network traffic, we used a new approach,
which allows us to decrypt each network transmission. This
way the collected traffic can also be used to train machine
learning models, where labelling the data is essential. For
this, we have modified the OpenSSH and OpenSSL source
code on the honeypot in a way that allows us to export
the session key during the handshake phase of the network
transmission. The session key, called shared secret in SSH
and (pre-)master secret in SSL/TLS, is the final result of the
handshake between the client and the server and is used to
encrypt and decrypt all packets during a session. The keys are
then sent to the monitoring server as UDP packets and stored
inside a database. For HTTPS connections, Wireshark offers
the ability to decrypt network traffic given the session key
of the connection [8]. Since there is no equivalent function to
decrypt SSH traffic in Wireshark, we developed a custom Ruby
script that uses the session key to decrypt the SSH session.

III. EXPERIMENTAL RESULTS

In this section, we will present our findings from observing
attackers on the honeypot. The honeypot ran for two different
time periods from May 2017 to September 2019 and from
January 2021 to October 2021. There were over 2 million SSH
connections on the honeypot. Only connections where at least
the client banner was received were taken into account, thus
excluding port scans. Overall, 92% of the connections made
a login attempt on the honeypot, with the majority of those
(88.7%) trying only one password and the maximum being 15
password attempts in one connection (observed in 2 attacks).
249,806 (11.1%) were connections with a successful login.
Table I and II show the most frequently observed usernames
and passwords.

A. Attack Software

During the establishment of an SSH connection, an identifi-
cation string, often also referred to as banner or version string,
is sent both from the client and server side. In addition to the
protocol version, this identifier also contains a description of
the SSH software used. Table III shows the SSH identification
strings most commonly used by attackers. It is noticeable that
several identifiers used by attackers do not belong to any real
SSH software, e.g.:

SSH-2.0-PUTTY SSH-2.0-OpenSSH_+3Vke
SSH-2.0-OpenSSH SSH-2.0-OpenSSH_/q+po
SSH-2.0-OpenSSH_7 SSH-2.0-OpenSSH_1aCAJ

The identifiers shown on the right are especially notable as
each consists of the string SSH-2.0-OpenSSH_ followed by a
5-character random string. There were a total of 280 different
identifiers of this format, each observed only once on the hon-
eypot. Wu et al. [9] made a similar observation on their honey-
pot where attackers used a massive amount of randomized SSH
identifiers. All these identifiers do not correspond to the usual
naming conventions of the specified software. The original
SSH client software Putty uses an identifier of the form

TABLE I
TOP 10 USERNAMES

Username Frequency %
root 1,041,415 38.00%
support 230,245 8.40%
admin 146,564 5.35%
guest 145,355 5.30%
test 114,362 4.17%
user 60,810 2.22%
ubnt 45,152 1.65%
default 44,847 1.64%
administrator 41,529 1.52%
user1 40,769 1.49%

TABLE II
TOP 10 PASSWORDS

Password Frequency %
<username> 558,031 21.83%
qwerty 114,712 4.49%
password 108,689 4.25%
123456 103,806 4.06%
admin 48,884 1.91%
<empty> 45,769 1.79%
12345 45,136 1.77%
1234 45,059 1.76%
123 44,933 1.76%
pass 44,190 1.73%

TABLE III
TOP 10 SSH IDENTIFICATION STRINGS

SSH Identifier Frequency %
SSH-2.0-Go 793,142 32.35%
SSH-2.0-libssh-0.6.3 308,221 12.57%
SSH-2.0-libssh_0.9.6 149,589 6.10%
SSH-2.0-PUTTY 134,019 5.47%
SSH-2.0-libssh-0.1 87,758 3.58%
SSH-2.0-OpenSSH_7.3 75,530 3.08%
SSH-2.0-libssh_0.9.5 67,940 2.77%
SSH-2.0-libssh2_1.4.3 57,556 2.35%
SSH-2.0-libssh-0.5.2 40,372 1.65%
SSH-2.0-libssh_0.9.3 36,433 1.49%

SSH-2.0-PuTTY_Release_0.76, which uses both upper and
lower case as well as an integrated version number. OpenSSH
uses an identifier of the form SSH-2.0-OpenSSH_7.2p2

Ubuntu-4ubuntu2.10 which has an integrated major and
minor version number and may be followed by a specification
of the Linux distribution. We also noticed, that 79 different IP
addresses iterated between multiple identifiers for each new
connection. While this is a small number of IP addresses, they
account for 23% of all SSH connections on the honeypot. As
most of them iterated through exactly 55 different identifica-
tion strings, it is likely that these IP addresses either employ
the same brute force tool or originate from the same attacker.
Concluding, we observed that attackers use two methods to
disguise the software they use, either by specifying a fictitious

434

TABLE IV
MOST COMMON SSH ALGORITHM CONFIGURATIONS

SHA1 Hash Frequency % Announced Software Real Software
288c66588db389b6801571880924dd85297d2a79 643,680 26.32% SSH-2.0-Go SSH-2.0-Go
8578c6a37e5b097284a20d8f0519a5cb2ad026e0 613,020 25.07% varying (62 different) libssh2 (1.7.0 to 1.8.2)
c8ad4c355704aaba3800940bd9ed054d08e4cad8 307,264 12.57% libssh (0.6.0 to 0.6.3) libssh (0.6.0 to 0.6.3)
2f98915624e4915998bb5df0fd479130692fe6ea 204,283 8.35 % libssh (0.9.3 to 0.9.5) libssh (0.9.4 to 0.9.5)
b434178777373b47db393ca51da74db1480b14f1 132,143 5.40% SSH-2.0-PUTTY,

libssh2 (1.4.0 to 1.6.0)
libssh2 (1.2.2 to 1.6.0)

d28b3083118279bcb03c38970fd9693a439a86ed 120,715 4.94% libssh (0.1 to 0.3.0) libssh (0.1 to 0.4.0)
515319d6cdf4996c60308f6dd26e181d6e54baf8 96,121 3.93% SSH-2.0-Go SSH-2.0-Go
cdde4ab3e6f918d2c9debc0943e79a48f0380039 75,413 3.08% OpenSSH_7.3,

SSH-2.0-ssh2js0.3.6
<unknown>

65c1f4b8dfcd62b87cee2de33cd6dea6f639bc1a 64,371 2.63 % SSH-2.0-PUTTY,
libssh2 (1.8.1 to 1.9.0)

libssh2 (1.9.0)

228a732a419c331781625f127e575ad35b0431fe 40,387 1.65% libssh (0.4.6 to 0.5.5) libssh (0.4.1 to 0.5.5)

identification string or by enumerating through multiple valid
identification strings.

Following, we will show how to get to the real software used
by the attackers. One way to identify the real SSH software
used by the attackers is to analyse the key exchange packet.
This packet is sent during the SSH handshake by both sides
to negotiate the cipher algorithms for the following encrypted
connection. The offered algorithms as well as their order
can vary for each SSH software and may change between
different versions of the same software. The large amount
of possible algorithms as well as their order makes it highly
unlikely that different SSH libraries use the exact same default
configuration. This makes the algorithm negotiation packet
ideal for distinguishing the different SSH software from each
other and detecting spoofed SSH identification strings. To au-
tomatically distinguish the different algorithm configurations
from each other, we compute a SHA1 hash of the portion of
the negotiation packet containing the algorithms. The hash is
used as a fingerprint for that specific configuration. Following
is an example of the default configuration of libssh in version
0.6.0 to 0.6.3:

Kex algorithm curve25519-sha256@libssh.org,ecdh-
sha2-nistp256,diffie-hellman-group14-
sha1,diffie-hellman-group1-sha1

Host Key alg. ecdsa-sha2-nistp256,ssh-rsa,ssh-dss
Cipher aes256-ctr,aes192-ctr,aes128-ctr,aes256-

cbc,aes192-cbc,aes128-cbc,blowfish-
cbc,3des-cbc,des-cbc-ssh1

MAC algorithm hmac-sha1
Compression alg. none

For this key exchange packet we get the hash
c8ad4c355704aaba3800940bd9ed054d08e4cad8.

Looking at the different hashes calculated for the connec-
tions on the honeypot, we can see that a few configurations
are responsible for the majority of the connections, with
the 10 most frequent configurations accounting for 94% of
all SSH connections. For all configurations, we both col-
lected the identification strings provided by the attackers

and researched the SSH software that actually belongs to
the configurations, which is shown in Table IV. We were
unable to determine the software belonging to the config-
uration cdde4ab3e6...48f0380039, as this configuration
neither conforms to the announced SSH libraries nor to any
software known to us. This configuration may belong to a
custom software used by the attackers. For the second most
frequent configuration, a total of 62 different identifiers were
employed by the attackers. However, based on the algorithms
used, we were able to determine that this configuration be-
longs to the library libssh2. Also, the spoofed identification
string SSH-2.0-PUTTY belongs to the library libssh2. The
spoofed identifiers shown at the beginning of the section,
which consist of the string SSH-2.0-OpenSSH_ followed
by a 5-character random string, were found to belong to
the SSH package of the programming language Go. It is
also noteworthy that the most frequently used configuration
288c66588d...85297d2a79 belonging to SSH-2.0-Go was
first seen in 2021 and quickly took the lead among the SSH
configurations.

B. Attacker Behaviour after Intrusion

To study the activities performed by attackers on the hon-
eypot after a successful login, we decrypted each connection
and analysed the SSH commands. SSH is typically used to
log into a server and use the remote shell to interact with
the server. In addition, it also provides the ability to tunnel
connections through port forwarding as well as to upload
and download files using SFTP or SCP. The SSH connection
protocol, specified in RFC4254 [10], defines all services
that can be executed within an SSH connection. An SSH
connection is divided into one or multiple channels, each of
which is started by a CHANNEL_OPEN message. Within this
message, the parameter channel_type specifies the purpose of
the channel. On the honeypot, only the channel types session
for launching an interactive session and direct-tcpip to
start port forwarding could be observed. During a session,
the command CHANNEL_REQUEST can be used to start
a program on the remote side. This program is specified by

435

TABLE V
SSH CHANNEL AND REQUEST TYPES

Type Frequency %
direct-tcpip 371,082 99.50%
session 1870 0.50%

exec 1587 0.43%
shell 152 0.04%
subsystem (sftp) 85 0.02%

the parameter request_type and can be a shell (request_type:
shell), an application program (request_type: exec), or a
subsystem such as SFTP (request_type: subsystem) used
to upload or download files. Other request types such as
env, exit-status, window-change or exit-signal were
excluded from the statistics as they have no relevance for an
attack. Table V shows the frequency of channel types and
request types.

The majority of sessions used the request type exec. This
type is used to start the execution of a command on the
server. Unlike the request type shell, this does not start a
terminal where the user can enter commands interactively,
but sends only a single command to the server. In OpenSSH,
this can be achieved by passing the command directly to the
ssh program (e.g. ssh user@server ’ls -la’). Since this
type of interaction with a server is quite uncommon for a
human user, it can be assumed that these attacks were carried
out by bots. While sessions are used to attack the honeypot
itself by reading the data on the server or installing malware,
it has become apparent that the majority of attackers use the
honeypot for other purposes. Through the method of port
forwarding (direct-tcpip), attackers can use the SSH con-
nection to tunnel connections to other servers. This way, they
can hide their real IP address and use the compromised server
as a proxy to attack their actual targets. The high number
of these attacks on the honeypot shows that compromised
servers are often only used as proxies by attackers. Looking
at the target ports of the tunnel connections, we found that
the majority was web traffic, with 46% HTTP (port 80) and
30% HTTPS (port 443), followed by SMTP traffic on port 25
(19%), port 587 (3.4%) and port 465 (0.3%).

Next, we will have a look at the commands used by attackers
during SSH connections. For this we consider all connections
that include sessions with commands (exec) or shell input
(shell). Connections that only use the honeypot as a tunnel
are excluded, since they do not interact with the server itself.
The commands were parsed and classified into 5 categories:

• Recon: Commands used to investigate the filesys-
tem, software or hardware configuration like ls, df,
ifconfig, w, who, netstat, ps, top, uname, lscpu.

• Download: This includes the download and installation
of malware or tools using commands like curl, wget,
ftp, git clone, scp.

• Exec: This involves the execution of programs or mal-
ware. This is detected based on the presence of the ./

	0

	10

	20

	30

	40

	50

	60

	70

	80

	90

	100

Exec Download Cleanup Recon User

P
e
rc
e
n
ta
g
e
	o
f	
S
S
H
	C
o
n
n
e
c
ti
o
n
s

Bots Humans

Fig. 1. Command types used by human attackers and bots

notation, used in Linux to run a custom program, or
through the use of an interpreter or shell such as perl,
python, bash, sh to execute a script.

• User: This includes actions which affect the users of the
system like changing passwords (chpasswd, passwd),
adding users (useradd) or adding SSH public keys.

• Cleanup: This includes commands that attackers use to
cover their tracks. This involves deleting or emptying
files (rm, cat /dev/null >, crontab -r), deleting
bash history (history -c) or killing processes (kill,
pkill, killall).

Each SSH connection was labelled based on these cat-
egories if it contained at least one command that belongs
to the particular category. Thus, an SSH connection can be
assigned anything between 0 and 5 categories. Fig. 1 shows the
percentage of SSH connections assigned to the 5 categories.
This is further divided into human attackers and bots. We
classified shell connections to be executed by a human based
on the sequence and timing of packets. During a shell via SSH,
each character that the user types is transmitted separately to
the server and is mirrored back by it afterwards. As human
users tend to type commands instead of just pasting the entire
command, a large part of such an SSH connection consists of
sequences of small packets with the sender alternating between
server and client. Also, humans type commands at a slow and
steady rate and need time to look at the output while bots
send commands immediately. Using these characteristics, we
manually classified the 152 shell sessions as either human or
bot. 125 sessions had no activity from the client side and
were excluded. Of the remaining, we found 21 connections
to be executed by human attackers. Even though this number
is very low (1.1% of all sessions), it is consistent with the
observations of other studies stating that most attacks are
carried out by bots [11]. Connections made by bots are mainly
used to install and execute malware, which is evident in
the high number of commands belonging to the categories
download and exec. Some bots even run identical commands
in multiple SSH connections and also retried previously failed
commands. In contrast, human attackers almost always per-
form reconnaissance of the system first and try to cover their
tracks afterwards. Also, human attackers try to change the user
password much more frequently than bots.

436

	0

	10

	20

	30

	40

	50

	60

	70

	80

	90

	100

Europe Asia North
America

South
America

Africa

P
e
rc
e
n
ta
g
e
	o
f	
S
S
H
	C
o
n
n
e
c
ti
o
n
s

Brute	Force Session Tunnel

Fig. 2. Origin of attacks by attack type

C. Origin of Attacks

To get an impression of the origin of the attackers, we anal-
ysed the IP addresses used for the different types of attacks.
In total, we received connections from 35,445 different IP
addresses that made a login attempt on the honeypot. Looking
at the group of IP addresses used for brute force attacks and the
group of IP addresses that made a successful login, we can see
that there is a clear separation between both groups. 97.7% of
the IP addresses were only used to perform dictionary attacks.
These IP addresses, even upon finding valid credentials, never
executed commands on the server. 542 (1.53%) IP addresses
successfully logged into the server but did not perform any
dictionary attacks. 268 (0.76%) were used to perform both
dictionary attacks and intrusions on the server. If we look at
the groups of IP addresses that perform the different types
of intrusions, we can observe the same pattern. There is a
clear separation between IP addresses performing tunnelling
attacks and IP addresses executing commands on the server.
We found only 14 IP addresses performing both tunnelling
attacks and executing commands. So, we can conclude that
most IP addresses are specialized for a particular task.

For each IP address, we determined the geographic location.
Fig. 2 shows the origin of the attackers, categorized into the 5
continents and divided by the type of attack performed. Brute
force attacks originate mainly from Asia and Europe, with
China being the largest contributor. Attackers who executed
commands during sessions are spread almost equally between
the 3 continents Europe, Asia and North America with the
United States being the country where most attacks came
from. Interestingly, the majority of tunnelling attacks originate
from Europe only. The Netherlands were by far the largest
contributor, accounting for 68% of the tunnelling attacks.
Barron and Nikiforakis [11] made a similar observation in
2017. They also noticed that a large part of tunnelling attacks
originated in the Netherlands. This indicates that this type of
attack is already being carried out for several years.

D. Malware Files

Many attackers who used the server to execute commands
installed additional malware. A total of 1429 file transfers were
observed. Various methods were used to transfer files to the

TABLE VI
MOST COMMON MALWARE TYPES

Malware Type Uploads Unique Files
Crypto Miner 489 32
Tsunami 331 75
Downloader 151 31
DDoS 80 34
Mirai 69 27
Shellbot 37 9
Bashlite 13 9

TABLE VII
MOST COMMON MALWARE FILE TYPES

File Type Uploads Unique Files
ELF 64-bit 547 29
ELF 32-bit 426 140
Shell Script 161 38
gzip 54 25
Perl Script 45 11
tar 5 4
JSON 4 2

server. The most common method was HTTP (93%) through
the commands wget and curl, followed by SFTP (6%) and SCP
(0.8%). We could not observe the use of HTTPS. Often the
same file was uploaded multiple times and through different
commands. We extracted the files from the captures, obtaining
a total of 302 unique files based on the SHA1 hash of the
files. The files were analysed using the API of VirusTotal [12]
and classified into malware categories based on the malware
labels returned by the detection engines of VirusTotal. From
the 302 unique files analysed, a total of 249 were detected
as malware. Table VI and VII show the frequency of the
most common categories and file types of the malware files.
Crypto Miner account for the largest percentage of uploads.
The second place belongs to malware of the botnet Tsunami.
Tsunami, also known as Kaiten, is an IRC botnet and is mainly
used to launch DDoS attacks [13]. Following are other DDoS
malware variants, which also include malware known as XOR
DDoS. Also, malware belonging to the botnets Mirai and
Bashlite could be found, all of which are also DDoS-capable
malware. Mirai is a botnet that started in 2016 and is still one
of the most common botnet malware found. Even though Mirai
prefers Telnet as an intrusion vector [14], we could find several
different variants on our SSH honeypot. Furthermore, 31
different shell scripts, which we have classified as Downloader,
were found. These are primarily used to download additional
files using shell commands like wget or curl. Looking at
the file types used, there is a predominance of executable
binaries. There is a slight majority of 64-bit binary files (44%)
compared to 32-bit binary files (34%) in terms of the total
number of uploads. However, looking at the number of unique
files shows a large majority of 32-bit binaries (56%) compared
to 64-bit binaries (12%). This indicated that there are far more
different 32-bit malware variants in use by attackers.

437

IV. RELATED WORK

One of the most well-known projects related to honeypots
is the Honeynet project [15]. Established in 1999 as a research
organization, they designed multiple generations of honeynet
architectures [16] and developed open source tools like Se-
bek [17] to monitor networks of honeypots.

Various works address the setup, architecture and design
of honeypots. Franco et al. [18] give an extensive overview of
honeypots for IoT, Industrial IoT and Cyber-Physical Systems,
including several SSH honeypots. Nicomette et al. [6] describe
their architecture of a high-interaction SSH honeypot. Barron
and Nikiforakis [11] used Cowrie honeypots to investigate how
certain properties, such as the location, the difficulty to break
in, or the available files, affect the attractiveness of a honeypot.

Several studies [4], [19], [20] reported basic statistics about
brute force attacks like IP addresses of attackers, SSH banners
or usernames and passwords. Rabadia and Valli [21] used
Kippo SSH honeypots to analyse dictionaries and wordlists
involved in brute force attacks. Rabadia et al. [22] analysed
the timing of intrusion attempts during a 24-hour day gathered
from 6 Kippo SSH honeypots. Ghiëtte et al. [23] used a finger-
printing method similar to ours based on hashes of advertised
algorithms to identify SSH brute force tools. However, the
period of this study was only one month. Also, even though
they mentioned finding spoofed SSH identification strings,
they never showed the real software used by attackers.

Contrary to our approach of using a high-interaction honey-
pot, most previous works relied on low- or medium-interaction
honeypots like Kippo or Cowrie which are easy to maintain
and avoid the risk of attackers gaining access to a fully
functional server. Others prevented a login altogether, thus
investigating only incoming dictionary attacks. All of these
approaches make it impossible to guarantee realistic interac-
tion of the attackers with the honeypot. Also, well-known
honeypots such as Kippo or Cowrie may be detected by
attackers [24] and some IP addresses used by attackers only
emerge after a login has already been found.

V. CONCLUSION

In this paper, we presented an overview of current attacks
targeting the SSH protocol observed on a high-interaction
honeypot. Through the use of a high-interaction honeypot, we
were able to observe the full spectrum of attacker activities
and provided attackers with a fully functional server, making
it possible to observe attacks that are as realistic as possible.

In some aspects, we could reconfirm the results of other
studies based on new data. This includes the fact that we found
that most attacks are carried out by bots and that in most
cases attackers only use the server as a proxy to attack other
targets. Further, we presented new insights into the origin and
tools used by attackers. We showed that attackers use different
methods to disguise the software they use and we are the first
to present the actual software used by attackers. Also, our
observations suggest that attackers organize their IP addresses
depending on specific tasks, with certain IP addresses used for
brute force attacks and others performing the intrusion step.

REFERENCES

[1] L. Spitzner, Honeypots: Tracking hackers, 2002.
[2] Unit 42 - Palo Alto Networks, “2020 Unit 42 IoT threat report,” Tech.

Rep., 2020.
[3] H. Zhao, H. Shu, and Y. Xing, “A review on IoT botnet,” in The 2nd

International Conference on Computing and Data Science (CONF-CDS
2021), 2021.

[4] A. Abdou, D. Barrera, and P. C. van Oorschot, “What lies beneath? An-
alyzing automated SSH bruteforce attacks,” in Technology and Practice
of Passwords, 2016, pp. 72–91.

[5] D. Ramsbrock, R. Berthier, and M. Cukier, “Profiling attacker behavior
following SSH compromises,” in 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN’ 07), 2007, pp.
119–124.

[6] V. Nicomette, M. Kaâniche, E. Alata, and M. Herrb, “Set-up and
deployment of a high-interaction honeypot: Experiment and lessons
learned,” Journal in Computer Virology, vol. 7, pp. 143–157, 2011.

[7] S. Sentanoe, B. Taubmann, and H. P. Reiser, “Virtual machine intro-
spection based SSH honeypot,” in Proceedings of the 4th Workshop on
Security in Highly Connected IT Systems (SHCIS ’17), 2017, pp. 13–18.

[8] J. Bullock and J. T. Parker, Wireshark® for security professionals: Using
Wireshark and the Metasploit® framework, 2017.

[9] Y. Wu, P. M. Cao, A. Withers, Z. T. Kalbarczyk, and R. K. Iyer,
“Mining threat intelligence from billion-scale SSH brute-force attacks,”
in Workshop on Decentralized IoT Systems and Security (DISS), 2020.

[10] T. Ylonen and C. Lonvick, “RFC4254 - The secure shell (SSH)
connection protocol,” 2006. [Online]. Available: https://datatracker.ietf.
org/doc/html/rfc4254

[11] T. Barron and N. Nikiforakis, “Picky attackers: Quantifying the role
of system properties on intruder behavior,” in Proceedings of the 33rd
Annual Computer Security Applications Conference (ACSAC 2017),
2017, pp. 387–398.

[12] (2022, Sep.) VirusTotal. [Online]. Available: https://www.virustotal.com/
[13] M. De Donno, N. Dragoni, A. Giaretta, and A. Spognardi, “DDoS-

capable IoT malwares: Comparative analysis and Mirai investigation,”
Security and Communication Networks, 2018.

[14] H. Griffioen and C. Doerr, “Examining Mirai’s battle over the internet
of things,” in Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’20), 2020, pp. 743–756.

[15] L. Spitzner, “The Honeynet Project: Trapping the hackers,” IEEE Secu-
rity & Privacy, vol. 1, no. 2, pp. 15–23, 2003.

[16] D. V. Silva and G. D. Rodríguez Rafael, “A review of the current state
of honeynet architectures and tools,” International Journal of Security
and Networks, vol. 12, no. 4, pp. 255–272, 2017.

[17] The Honeynet Project, “Know your enemy: Sebek, a kernel based
data capture tool,” 2003. [Online]. Available: http://honeynet.onofri.org/
papers/sebek.pdf

[18] J. Franco, A. Aris, B. Canberk, and A. S. Uluagac, “A survey of
honeypots and honeynets for internet of things, industrial internet of
things, and cyber-physical systems,” IEEE Communications Surveys &
Tutorials, vol. 23, no. 4, pp. 2351–2383, 2021.

[19] G. K. Sadasivam, C. Hota, and B. Anand, “Honeynet data analysis
and distributed SSH brute-force attacks,” in Towards Extensible and
Adaptable Methods in Computing, 2018, pp. 107–118.

[20] S. Z. Melese and P. Avadhani, “Honeypot system for attacks on SSH
protocol,” International Journal of Computer Network and Information
Security, vol. 8, no. 9, pp. 19–26, 2016.

[21] P. Rabadia and C. Valli, “Finding evidence of wordlists being deployed
against SSH honeypots - implications and impacts,” in Proceedings of
12th Australian Digital Forensics Conference (ADF 2014), 2014, pp.
114–120.

[22] P. Rabadia, C. Valli, A. Ibrahim, and Z. Baig, “Analysis of attempted
intrusions: Intelligence gathered from SSH honeypots,” in Proceedings
of the 15th Australian Digital Forensics Conference (ADF 2017), 2017,
pp. 26–35.

[23] V. Ghiëtte, H. Griffioen, and C. Doerr, “Fingerprinting tooling used for
SSH compromisation attempts,” in 22nd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2019), 2019, pp.
61–71.

[24] A. Vetterl and R. Clayton, “Bitter harvest: Systematically fingerprinting
low- and medium-interaction honeypots at internet scale,” in 12th
USENIX Workshop on Offensive Technologies (WOOT 18), 2018.

438

