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Abstract—DNN offloading has become an important sup-
porting technology for edge intelligence. However, most of the
existing works do not consider thread scheduling, which can
achieve the parallelism of multiple threads in the practical
distributed DNN inference system. To address this issue,
we discuss the thread scheduling of the computing units
participating in offloading in this paper, considering a single-
core Central Processing Unit (CPU) and the Round Robin
Scheduling (RRS). We deduce the relationship between the
blocking of DNN inference-related threads and the Average
Task Delay (ATD) and prove that an appropriate buffer
setting can reduce blocking times. Theoretical analysis ver-
ifies that the buffering mechanism (DBM) can reduce the
ATD significantly, and experimental results demonstrate that
the DBM-improved DNN offloading can achieve a delay
reduction of 14%-71%.

Index Terms—DNN offloading, streaming tasks, buffering
mechanism

I. INTRODUCTION

Deep Neural Networks (DNNs) have pushed artificial
intelligence to an unprecedented height [1]. Many appli-
cations have reached the precision level that can be practi-
cally applied, such as face recognition [2], video analysis
[3], and natural language processing [4]. However, high-
precision DNNs usually require high computing power [5].
They must run on high-performance processors, or the task
delays will be intolerable [6].

In order to enable devices with low computing power,
such as mobile phones and VR helmets, to benefit from
deep learning, some works explore DNN offloading. They
offload users’ DNN tasks to computing units such as cloud
and edge servers, which complete the execution of DNNs,
and then return the results to users. Traditionally, users’
DNN tasks were offloaded to a single unit [7], and the
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unit is usually the cloud [8], [9]. Now, partitioning DNNs
into multiple parts and offloading them to multiple units
is another mainstream [10].

So far, a widely studied category of the offloading
model is the single-task model. It treats a DNN and its
required input data as a whole, optimizing the total delay
of the DNN processing all the data. The related work
can be divided into three categories: offloading schemes
for different device networks (edge [11]–[13], edge-cloud
[14]–[16]), joint optimization of delay and other indicators
(energy [17]–[19], privacy [20]), as well as the resource
competition and task queuing process in the multi-task-
multi-unit scenario [21], [22].

As a critical DNN task type, streaming tasks have
gained increasing popularity [14], [23]. [14] initially in-
troduced the pipeline idea, while [23] (OCDST) formally
proposed the concept of streaming tasks. When performing
streaming tasks, the involved computing units work as a
pipeline. Parallelizing the steps in the pipeline can signifi-
cantly reduce the delay. OCDST completes the transforma-
tion from theoretical research to practical implementation
by mapping the DNN execution into multiple receivers
(receiving threads), computers (computing threads), and
publishers (publishing threads) [24]. In each unit, the
receiving (producer) and computing (consumer) threads
compose a producer-consumer pattern, and the comput-
ing (producer) and publishing (consumer) threads form
another producer-consumer pattern [25]. However, we no-
ticed that when analyzing the Average Task Delay (ATD)
of a distributed DNN inference system implemented by
the multithreading technique. OCDST only considered
the executing delay of each thread, ignoring the delay
introduced by thread scheduling. Therefore, the inferring
speed of the practical system is slower than that derived
from the theory. To address this issue, we analyze the
thread scheduling process in OCDST based on a single-
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Fig. 1: Scheduling Status (1). Fig. 2: Scheduling Status (2). Fig. 3: Scheduling Status (3).

core Central Processing Unit (CPU) and the Round Robin
Scheduling (RRS) and prove that the buffering mechanism
can further reduce the ATD. The demonstration includes
three steps: firstly, we show that an appropriate buffer
setting reduces the blocking times of the producer thread to
0 or those of the consumer thread to 1. Next, we deduce
the quantitative relationship between the blocking times
and the ATD. Finally, we substitute the buffer setting into
the quantitative relationship and obtain the reduced ATD
value. We implement a distributed DNN inference system
in which the receiving, processing, and publishing threads
on each computing unit share a single-core CPU based
on the RRS. We accelerate the inference by adequately
setting the buffer size. The simulating results show that
OCDST improved by the buffering mechanism achieves a
delay reduction of 14%-71%. Our contributions are:

• Based on a single-core CPU and the RRS, the thread
scheduling process in OCDST is analyzed, and a
buffering mechanism is proposed to reduce the ATD
further.

• A distributed DNN inference system is implemented,
verifying the buffering mechanism’s effectiveness nu-
merically.

The rest of this paper is organized as follows. Section II
analyses the thread scheduling process based on a single-
core CPU and the RRS. Section III discusses the relevance
between the thread blocking and the buffer size. Section
IV deduces the relationship between the blocking of DNN
inference-related threads and the ATD. Section V describes
the experimentation. Finally, Section VI concludes this
paper.

II. OCDST’S THREAD SCHEDULING

In a distributed DNN inference system handling stream-
ing tasks, the ATD is mainly influenced by the task receiv-
ing, processing, and publishing delays of each computing
unit, which are related to the size and the computing
amount of the task, as well as the transmitting and
computing capacity of the computing unit. OCDST has
discussed the optimizing problem based on these three
delays, minimizing the ATD by searching for the optimal
offloading scheme. However, thread parallelism is usually
implemented with multithreading, which introduces extra
delays depending on the thread scheduling mode. OCDST

assumes that each computing unit’s receiving, computing,
and publishing programs are entirely parallel without con-
sidering the impact of thread scheduling. Therefore, when
implementing a practical system, the inference speed will
be slightly slower than the theoretical value. Fortunately,
the buffering mechanism can mitigate the impact of thread
scheduling. Specifically, the task receiving, computing,
and publishing threads on a unit behave as producers or
consumers. The producer works only when the product
queue (buffer) is not full, and the consumer works only
when the product queue is not empty. Otherwise, the
producer (consumer) threads will wait in the waiting
queue. Besides, when the required conditions are met, the
producer (consumer) threads in the waiting queue can not
directly be executed but will be moved to the ready queue,
waiting for the execution of the threads in front of it. The
waiting time in the ready queue is the delay introduced by
thread scheduling. Our idea is to prove that the buffering
mechanism can decrease the waiting frequency of producer
(consumer) threads, achieving a delay reduction. Next,
we will elaborate on the thread scheduling process in the
distributed DNN inferring system.

We discuss the thread scheduling process of a single-
core CPU based on the RRS, where we set the same
priority for all the threads. Each DNN inference-related
thread needs to wait for two kinds of threads. One is
the threads completing the inference together with it.
For example, the computing thread must wait for the
receiving and publishing threads. The other is the threads
unrelated to DNN inference. Therefore, we assume that
only four threads participate in the thread scheduling of
the operating system – the receiving thread, the computing
thread, the publishing thread, and the irrelevant thread.
This assumption is only used to simplify the analysis
and will not mislead the results. The time slice of the
irrelevant thread is the sum of the time slices allocated to
all the threads unrelated to DNN inference. Fig. 1 shows
a possible thread scheduling status. Arrow ① represents
the process of a thread transferring to a ready state from a
running state. For a thread running on the CPU, if its time
slice has been used up, the thread will be moved from
the CPU to the ready queue, transferring to a ready state.
Arrow ② represents the process of a thread transferring to
a running state from a ready state. If no thread is executing
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on the CPU, the scheduler will move the thread at the
head of the ready queue to the CPU, and so the thread
transfers to a running state. Arrow ③ represents the process
of a thread transferring to a blocked state from a running
state. For a thread running on the CPU, if it asks for some
unavailable resources, it will transfer to a blocked state and
sleep in the waiting queue until the resources are available.
Arrow ④ represents the process of a thread transferring to
a ready state from a blocked state. If the resources waited
by a blocked thread become available, the thread will be
awakened. As a result, it is moved to the ready queue to
participate in a new round of scheduling.

In the thread scheduling status shown in Fig. 1, the
computing thread is running on the CPU (running state),
the publishing thread and the irrelevant thread are in the
ready queue (ready state), and the receiving thread is in
the waiting queue (blocked state). During the execution
of the computing thread, it may process all the available
data within a time slice so that it is blocked due to lack
of data and moved to the waiting queue. The computing
unit switches to the thread scheduling status shown in
Fig. 2. The publishing thread at the head of the ready
queue is scheduled to a running state, and the irrelevant
thread advances one step in the ready queue. Since the
computing thread has processed all the available data,
the product buffer filled by the receiving thread becomes
empty. Accordingly, the receiving thread transfers from
a blocked state to a ready state, waiting for the CPU
scheduling. We assume that the publishing thread also
publishes all the available data within a time slice, and then
it transfers to a blocked state. The corresponding thread
scheduling status is shown in Fig. 3. The irrelevant thread
is moved to the CPU, taking some operations irrelevant
to the DNN inference. Its execution will not affect the
states of receiving, computing, and publishing threads. We
assume that the irrelevant thread cannot be blocked.

III. THE RELATION BETWEEN BLOCKING AND
BUFFERING

In Section II, we enable each DNN inference thread
running on the CPU to process all the available data within
the allocated time slice and then be blocked. It highlights
the role that buffer size plays in scheduling. If the buffer
size is reasonable, it will reduce the possibility of the DNN
inference threads transferring to a blocked state, which we
will elaborate on below.

For a DNN inference system, the receiving (producer)
and computing (consumer) threads on the same computing
unit form a producer-consumer pattern, while the com-
puting (producer) and publishing (consumer) threads form
another producer-consumer pattern. The buffer we discuss
is the corresponding product queue. Therefore, we only
need to excavate the impact of the buffer size on producers
and consumers, regardless of which thread is taking the
role of a producer or consumer. We denote the producing
speed of the producer as vp and the consuming speed of

the consumer as vc. Then in a time slice τ , the producer
can produce at most np = vpτ products, and the consumer
can consume at most nc = vcτ products. We set the buffer
size to min(np, nc). Accordingly, we have the following
three conclusions:

• If np > nc, the producer will be blocked in every
scheduling round, and the consumer will be blocked
at most once. Specifically, the producer fills the buffer
with nc products and then turns to a blocked state.
The consumer spends the entire time slice consuming
the nc products. If the consumer runs before the
producer at the first thread scheduling round, the
consumer will be blocked once because the buffer
is empty.

• If np < nc, the producer will not be blocked, and
the consumer will be blocked in every scheduling
round. Specifically, the producer can only produce
np products in a time slice. The producer will not be
blocked since the buffer size is exactly np. However,
the consuming capacity of the consumer is greater
than the producing capacity of the producer, and
thus the content in the buffer is not enough for
the consumer to fully use the entire time slice. The
consumer will be blocked after consuming all the
products in the buffer.

• If np = nc, the producer will not be blocked, and the
consumer will be blocked at most once. In this case,
the producer can spend a time slice filling the buffer,
while the consumer needs a time slice to make the
buffer empty. In the special case where the consumer
runs before the producer at the first thread scheduling
round, the consumer will be blocked as the first case.

Setting the buffer size nb to min(np, nc) is precisely
the buffering mechanism proposed in this paper. If nb <
min(np, nc), both the producer and consumer will be
blocked after producing or consuming nb products. They
cannot make full use of their time slices. If nb >
min(np, nc), there will be extra space with the size
of nb − min(np, nc) in the buffer because each time,
the producer (consumer) can only produce (consume)
min(np, nc) products. It leads to a waste of memory
resources.

IV. DECREASING ATDS BY BUFFERING MECHANISM

With the buffer size min(np, nc), we can reduce the
blocking times of the producer to 0 or those of the
consumer to at most 1. In other words, a suitable buffer
setting can decrease the blocking times of DNN inference-
related threads (these threads make up two producer-
consumer patterns). Next, we demonstrate that the ATD
decreases with blocking times dropping to prove that the
buffering mechanism can reduce the ATD.

In a thread scheduling round, the theoretical maximum
delay that a thread q can run on the CPU is the time
slice allocated, denoted as τq . Thread q may transfer to a
ready state or a blocked state after execution, waiting for
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other threads to be scheduled, and then it will be scheduled
again. We denote the sum of the executing time of other
threads in one thread scheduling round as τ−q. If q needs
the CPU time tq to accomplish its task, and q’s utilizing
rate towards the time slice is αq , then the scheduling round
amount zq that q needs to participate in is

zq =
tq

αqτq
. (1)

In zq thread scheduling rounds, the total waiting time
twq of the thread q is

twq = zqτ−q. (2)

Nevertheless, if q can fully use the time slice, it will
only participate in αqzq thread scheduling rounds, and
its waiting time will be αqt

w
q . Therefore, thread blocking

increases the waiting delay of q by (1−αq)t
w
q . As a result,

the user waiting time increases by

δtwq = (1− αq)t
w
q . (3)

Recall that when nb < min(np, nc), the producer and
consumer will be blocked in every scheduling round. We
denote producer and consumer threads as q′. The analysis
related to q′ applies to both producers and consumers.
Assuming that the number of tasks to be processed is na,
and each task requires q′ to run for t0 on the CPU, then
the total time tq′ that q′ needs to run on the CPU is

tq′ = t0na. (4)

In each execution, q′ can only process min(nb, np, nc)
tasks. That is, the time τ ′q′ that q′ can run in one thread
scheduling round is

τ ′q′ = t0 ·min(nb, np, nc). (5)

The number of thread scheduling rounds (zq′ ) that q′

needs to participate in is

zq′ =
tq′

τ ′q′
. (6)

Let the time slice allocating to q′ be τq′ , then the
utilization rate of q′ to the time slice (αq′ ) is:

αq′ =
τ ′q′

τq′
=

t0 ·min(nb, np, nc)

τq′
(7)

Denote the time that threads other than q′ occupy the
CPU in a scheduling round as τ−q′ , and then the time twq′
that q′ waiting for CPU scheduling is

twq′ = zq′τ−q′ . (8)

Accordingly, in the case where q′ is blocked every time
it runs, its delay will increase by δtwq′ compared with the

case without blocking. The following formula figures out
the value of δtwq′ :

δtwq′ = (1− α)twq′

= (1− t0 ·min(nb, np, nc)

τq′
)

t0na

t0 ·min(nb, np, nc)
τ−q′

= (
na

min(nb, np, nc)
− tq′

τq′
)τ−q′ .

(9)

Based on the analysis above, we can conclude about a
computing unit’s thread scheduling. Denote the bandwidth
as vt and the computing power of unit i as vci . When
processing one task, the computing amount, publishing,
and receiving data sizes of unit i are ci, dpi , and dri ,
respectively. Then the task amounts that receiving, cal-
culating, and publishing threads of unit i can deal with
within a slice τ are ni,rec = vtτ

dr
i

, ni,com =
vc
i τ
ci

, and

ni,pub =
vtτ
dp
i

, respectively. Assuming that we set the buffer
correctly and that the task amount is na, the three threads
need to run on the CPU for the time of ti,rec = na

ni,rec
τ ,

ti,com = na

ni,com
τ , and ti,pub = na

ni,pub
τ , respectively.

The number of scheduling rounds they participate in is
zi = na

min(ni,rec,ni,com,ni,pub)
. The time they wait for the

irrelevant thread is t′i = ziτ
′, where τ ′ is the executing

time of the irrelevant thread in a thread scheduling round.
OCDST has explained that the ATD of a distributed DNN
inference system is the longest single-task thread running
time. Assuming that the thread with the longest running
time is on the unit i, the ATD t̄ is

t̄ =
ti,rec + ti,com + ti,pub + t′i

na

=τ(
1

ni,rec
+

1

ni,com
+

1

ni,pub
)

+
1

min(ni,rec, ni,com, ni,pub)
τ ′.

(10)

The conclusions above are premised on the correct
buffer size. Namely, nb = min(ni,rec, ni,com, ni,pub). If
nb < min(ni,rec, ni,com, ni,pub), the number of schedul-
ing rounds will be z′i =

na

nb
, and the ATD will increase by

δt calculated as follows:

δt = τ ′(
1

nb
− 1

min(ni,rec, ni,com, ni,pub)
). (11)

In conclusion, we theoretically deduce the ATD value
δt reduced by the buffering mechanism.

V. EXPERIMENTATION

A. Parameters

We implement a distributed DNN-inference simulating
system with two single-core computing units. Initially,
the computing power of each unit is 24.5 GFLOPS,
and the bandwidth is 1 Gbps. The computing power is
obtained from our Intel i7-8700 CPU with 12 cores. The
tool ”QwikMark” shows that its computing power is 294
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GFLOPS. We use the single-core power of 294/12 = 24.5.
The bandwidth comes from our Gigabit LAN. Four threads
are running on each computing unit: the receiving thread,
which is responsible for receiving the input from the
user or the intermediate output from the last unit; the
computing thread, which is responsible for executing the
DNN offloaded to the computing unit; the publishing
thread, which is responsible for publishing the output to
the next unit; irrelevant threads, which takes the operations
unrelated to DNN inference. We set the time slice to be
0.1 s for all threads. It is the default slice of the Linux
SCHED RR Policy and can be checked by the command
”sysctl kernel.sched rr timeslice ms”. The threads share
the single-core CPUs on the computing units following
the RRS. The streaming task here is an image stream with
1000 images. The image size is 224×224×3. The involved
DNNs are NiN [26], AlexNet [27] and ResNet-18 [5].

B. The Performance of OCDST with Buffering Mechanism

Fig. 4: The Performance of OCDST with Buffering Mech-
anism.

We compare the performance of the OCDST improved
by the buffering mechanism (DBM) with the original
OCDST [23], MILP [12], and IAO [21] methods. The
metric is the inference ATD. The lower the ATD, the better
the method. As shown in Fig. 4, DBM reduces the ATDs
to 29%-86% of the others, while its ATDs are 53%-86%
of those of OCDST.

C. Effects of System Parameters on DBM-enabled Of-
floading Services

We have explained that setting the buffer size of unit i
to min(ni,rec, ni,com, ni,pub) can minimize the number of
threads blocked by the buffer. According to the theoretical
analysis in section IV, ni,rec, ni,com, and ni,pub are
positively correlated with the time slice. Besides, ni,rec

and ni,pub are positively correlated with the bandwidth,
and ni,com is positively correlated with the computing
power. In this section, we numerically verify the impact of
system parameters on the buffer setting. Only one variable

Fig. 5: Impact of Time Slice for DBM-enabled Offloading
Services.

Fig. 6: Impact of Bandwidth for DBM-enabled Offloading
Services.

Fig. 7: Impact of Computing Power for DBM-enabled
Offloading Services.

is changed in each experiment, and the other variables
remain at their initial values. The results are shown in
Fig. 5, 6, and 7. The tested offloading model is DBM.

Fig. 5 illustrates the impact of the time slice of DNN
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inference-related threads on the buffer setting. It can be
seen that as the time slice increases, the optimal buffer size
keeps rising. A larger time slice allows threads to process
more data in a scheduling round. Therefore, a larger buffer
is required to reduce blocking times.

Fig. 6 presents the effect of bandwidth on the buffer
settings. The optimal buffer size rises as the bandwidth
increases. However, such a trend stops when the bandwidth
exceeds a certain value. Increasing the bandwidth can raise
the number of tasks received and published in a time
slice. The uptrend reflects it. Nevertheless, the computing
thread becomes the speed bottleneck in the case where the
bandwidth is high enough. Since increasing the bandwidth
will not speed up the execution of the computing thread,
the optimal buffer size stops rising.

Fig. 7 shows the effect of computing power on the
buffer setting. The trend is the same as in Fig. 6, and the
causes are similar. Higher computing power enables the
computing thread to process more tasks in a time slice,
and thus the optimal buffer size rises. However, when
the computing power is large enough, the transmitting
threads (receiving and publishing threads) become the
speed bottleneck. Increasing the computing power will not
speed up the execution of the transmitting threads, and thus
the optimal buffer size does not increase.

VI. CONCLUSION

In this paper, we study the thread scheduling process of
DNN inference-related threads. The relationship between
the thread blocking and the ATD is deduced. A buffering
mechanism that can reduce the ATD by decreasing the
blocking times is proposed. Experimental results show that
the proposed buffering mechanism reduces the ATD to
29%-86% compared with the recent works.
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