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Abstract— In a static environment, as the available bandwidth 
increases, the slow congestion window increase rate prevents the 
existing TCP fully utilizing the bandwidth. CUBIC, a congestion 
control algorithm for high-speed networks, can provide higher 
throughput than existing algorithms but cannot guarantee 
satisfactory performance during frequent bandwidth fluctuations. 
Applying Deep-Q-Network to a TCP congestion control algorithm 
can improve link utilization. Therefore, in this paper, we propose 
a DQN-based CUBIC for various networks environments, which 
simultaneously utilizes the mechanisms of CUBIC and DQN. 
Through simulation experiments based on NS-3, it was confirmed 
that the proposed algorithm can increase the throughput 
compared to CUBIC in any link environment. 
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I. INTRODUCTION  
As communication technology has advanced, available 

bandwidth has increased, and users can use higher throughput. 
However, CUBIC, the default TCP congestion control algorithm, 
does not provide satisfactory performance in high-BDP 
networks [1] or 5G mmWave networks [2]. To address this 
concern, machine learning has been applied to congestion 
control algorithms. Earlier, we proposed Deep Q-Network 
(DQN)-based TCP congestion control algorithm v2 [3], which 
provided higher throughput than CUBIC in environments 
assuming wired networks. However, our proposed approach had 
certain disadvantages; it was based on Additive Increase 
Multiplicative Decrease (AIMD) and did not consider Round-
Trip Time (RTT) fairness. In this study, we have implemented 
DQN-based CUBIC in the NS-3 simulator by applying DQN to 
CUBIC so that it can adjust CUBIC’s scaling parameter based 
on learning. We then evaluated its performance in several 
scenarios. 

II. DQN-BASED CUBIC ALGORITHM 

A. State Space and Action Space 
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Figure 1 shows a Deep Neural Network model for action 
and state space. We used five variables for state space and input. 
The congestion window (Cwnd), RTT, and threshold are 
defined in standard TCP congestion control [4] and used as 
variables. 𝐼𝐼���  and 𝑇𝑇  are set as the values defined in TCP 
CUBIC [5], that are used for ensuring the optimal performance. 

The DQN output value obtained through the input of the 
state is 0 to 3. When action 𝐼𝐼 is 2 or 3, the agent operates to 
increase Cwnd using (1). Depending on the state of the network 
environment, the action that guarantees the optimal reward in 
the concave or convex function is obtained and executed 
through DQN learning. When action a is 0 or 1, it is determined 
that the network state is highly likely to cause congestion and 
the agent maintains or reduces Cwnd as in (2). For exploration 
and exploitation, the agent select action probabilistically uses 
the epsilon-greedy policy wherein 𝜀𝜀 is 0.015. 

B. Reward function 
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Like the previously proposed DQN-based TCP congestion 
control algorithm v2 [3], DQN-based CUBIC also sets a 
compensation function as shown in (3) to learn to maintain the 
Cwnd with the highest throughput. 𝑇𝑇𝑇𝐼𝐼𝐴𝐴𝑇𝑇𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝐴𝐴�_���  is the 
throughput calculated using (4), and it uses measured parameters 
when the DQN agent receives 𝐴𝐴𝐼𝐼𝑇𝑇�  for the 𝐴𝐴��  segment and 
confirms that the transmission is completed without congestion. 

𝑀𝑀𝐼𝐼𝑀𝑀𝐴𝐴𝐶𝐶𝑇𝑇𝐶𝐶𝐼𝑇𝑇𝑇𝐼𝐼𝐴𝐴𝑇𝑇𝐴𝐴𝑇𝑇𝑇𝑇𝑇𝐴𝐴���  is the Cwnd at the moment 
when congestion occurs during DQN learning and transmission. 
As the reward converges to 1, it learns to use the available link 
bandwidth to the maximum, so that the highest possible 
throughput can be maintained. When three duplicated ACKs 
occur owing to congestion, the reward is set to ‘−1’ to learn to 
avoid the same action for high Cwnd. Fig. 1. Deep Neural Network model for action and state. 
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III. EXPERIMENT ENVIRONMENT 

 
Fig. 2. NS-3 simulator experiment setup. 

Figure 2 illustrates the experiment setup on NS-3. The first 
experiment compares the performance of DQN-based CUBIC 
against existing congestion control algorithms. The performance 
is compared by transmitting NewReno, CUBIC, DQN-based 
TCP congestion control algorithm v2, and the proposed 
algorithm in a single flow. The experiment time is 100 seconds, 
and the RTT of the experiment environment is 100 ms. Link 
bandwidths of 50 and 100 Mbps are used. The second 
experiment compares the average throughput and recovery time 
in a low-latency and wide bandwidth network. The experiment 
time is 50 seconds, and the RTT of the experiment environment 
is 10 ms. A link bandwidth of 500 Mbps is used. 

IV. EVALUATION 

A. Average throughput comparison during single flow 

 
Fig. 3. Average throughput of each congestion control. 

Figure 3 is a graph comparing the average throughput of 
each congestion control simply during a single flow. NewReno, 
which is based on AIMD and has a Cwnd reduction index of 0.5, 
always had the lowest average throughput. However, DQN-
based CUBIC generated lower congestion than CUBIC. Even 
when congestion occurred, the recovery speed of Cwnd was 
faster than DQN-based TCP congestion control algorithm v2, so 
the average throughput was the highest. 

B. Comparison of average throughput and Cwnd recovery 

 
Fig. 4. Cwnd comparison under wide bandwidth and low-latency. 

Figure 4 is a graph comparing the Cwnd of CUBIC and 
DQN-based CUBIC in a low-latency and wide bandwidth 
network environment. Even in an ideal network environment 
where there is no link problem, CUBIC causes congestion 
because of its fixed algorithm, and has an average throughput of 
474.27 Mbps. However, DQN-based CUBIC operates to 
maintain maximum Cwnd without congestion after learning and 
has an average throughput of 481.49 Mbps. 

 
Fig. 5. Cwnd comparison in a rapid Cwnd reduction situation. 

Figure 5 is a graph comparing the recovery time after 
reduced Cwnd in a low-latency and wide bandwidth network 
environment. Three seconds after the experiment begins, the 
link environment deteriorates and Cwnd decreases significantly, 
after which it rises to the maximum throughput again. CUBIC 
takes approximately 15 seconds, whereas DQN-based CUBIC 
takes approximately 20% lower, i.e., 12 seconds. Furthermore, 
the average throughput up to approximately 20 seconds, when 
the Cwnd rise of CUBIC was completed, was 431.84 Mbps for 
CUBIC and 445.63 Mbps for DQN-based CUBIC, showing an 
improvement of approximately 3% in the average throughput. 

V. CONCLUSION 
In this paper, we propose DQN-based CUBIC and conduct 

performance experiments in the NS-3-based experimental 
environment. When the link bandwidth is 50 and 100 Mbps, 
DQN-based CUBIC has higher average throughput than existing 
congestion control algorithms. In an environment with a wide 
link bandwidth of 500 Mbps and low-latency of 10 ms, DQN-
based CUBIC showed an average throughput improvement of 
approximately 2%. The time taken to recover the significantly 
reduced Cwnd owing to packet loss is reduced by 20 %. 
However, the throughput is not significantly improved because 
of the increase in RTT as high Cwnd is maintained. In future 
research, we will modify the algorithm to consider RTT in the 
reward function to improve the average throughput further. 
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