

A DQN-based CUBIC for TCP Congestion Control

Sang-Jin Seo
School of Electronic and Electrical

Engineering
Kyungpook National University

Daegu, Korea
chil258@knu.ac.kr

Geon-Hwan Kim
School of Electronic and Electrical

Engineering
Kyungpook National University

Daegu, Korea
kgh76@ee.knu.ac.kr

You-Ze Cho*
School of Electronic and Electrical

Engineering
Kyungpook National University

Daegu, Korea
yzcho@ee.knu.ac.kr

Abstract— In a static environment, as the available bandwidth
increases, the slow congestion window increase rate prevents the
existing TCP fully utilizing the bandwidth. CUBIC, a congestion
control algorithm for high-speed networks, can provide higher
throughput than existing algorithms but cannot guarantee
satisfactory performance during frequent bandwidth fluctuations.
Applying Deep-Q-Network to a TCP congestion control algorithm
can improve link utilization. Therefore, in this paper, we propose
a DQN-based CUBIC for various networks environments, which
simultaneously utilizes the mechanisms of CUBIC and DQN.
Through simulation experiments based on NS-3, it was confirmed
that the proposed algorithm can increase the throughput
compared to CUBIC in any link environment.

Keywords—Deep Q Network, TCP congestion control

I. INTRODUCTION
As communication technology has advanced, available

bandwidth has increased, and users can use higher throughput.
However, CUBIC, the default TCP congestion control algorithm,
does not provide satisfactory performance in high-BDP
networks [1] or 5G mmWave networks [2]. To address this
concern, machine learning has been applied to congestion
control algorithms. Earlier, we proposed Deep Q-Network
(DQN)-based TCP congestion control algorithm v2 [3], which
provided higher throughput than CUBIC in environments
assuming wired networks. However, our proposed approach had
certain disadvantages; it was based on Additive Increase
Multiplicative Decrease (AIMD) and did not consider Round-
Trip Time (RTT) fairness. In this study, we have implemented
DQN-based CUBIC in the NS-3 simulator by applying DQN to
CUBIC so that it can adjust CUBIC’s scaling parameter based
on learning. We then evaluated its performance in several
scenarios.

II. DQN-BASED CUBIC ALGORITHM

A. State Space and Action Space

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (Target Cwnd)

=

⎩
⎨

⎧𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝐶𝐶 𝐶 𝐶𝐶)(𝑇𝑇 𝑇 𝑇𝑇)� + 𝑤𝑤���, 𝐾𝐾𝐾 �����(�� �)
�×�

�
, 𝑎𝑎𝑎 𝑎

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑇𝑇 𝑇 𝑇𝑇)� + 𝑤𝑤���, 𝐾𝐾𝐾 �����(�� �)
�

�
, 𝑎𝑎𝑎 𝑎

 (1)

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

= �𝐶𝐶𝐶 𝐶
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶 𝐶 (2)

Figure 1 shows a Deep Neural Network model for action
and state space. We used five variables for state space and input.
The congestion window (Cwnd), RTT, and threshold are
defined in standard TCP congestion control [4] and used as
variables. 𝑤𝑤��� and 𝑇𝑇 are set as the values defined in TCP
CUBIC [5], that are used for ensuring the optimal performance.

The DQN output value obtained through the input of the
state is 0 to 3. When action 𝑎𝑎 is 2 or 3, the agent operates to
increase Cwnd using (1). Depending on the state of the network
environment, the action that guarantees the optimal reward in
the concave or convex function is obtained and executed
through DQN learning. When action a is 0 or 1, it is determined
that the network state is highly likely to cause congestion and
the agent maintains or reduces Cwnd as in (2). For exploration
and exploitation, the agent select action probabilistically uses
the epsilon-greedy policy wherein 𝜀𝜀 is 0.015.

B. Reward function

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 �����������_���
������� �������������

 (3)

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�_��� =
����� × ���

����
 × 8, MSS = 1460 (4)

Like the previously proposed DQN-based TCP congestion
control algorithm v2 [3], DQN-based CUBIC also sets a
compensation function as shown in (3) to learn to maintain the
Cwnd with the highest throughput. 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�_��� is the
throughput calculated using (4), and it uses measured parameters
when the DQN agent receives 𝐴𝐴𝐴𝐴𝐴𝐴� for the 𝑖𝑖�� segment and
confirms that the transmission is completed without congestion.

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀��� is the Cwnd at the moment
when congestion occurs during DQN learning and transmission.
As the reward converges to 1, it learns to use the available link
bandwidth to the maximum, so that the highest possible
throughput can be maintained. When three duplicated ACKs
occur owing to congestion, the reward is set to ‘−1’ to learn to
avoid the same action for high Cwnd. Fig. 1. Deep Neural Network model for action and state.

419978-1-6654-9927-9/22/$31.00 ©2022 IEEE APCC 2022

III. EXPERIMENT ENVIRONMENT

Fig. 2. NS-3 simulator experiment setup.

Figure 2 illustrates the experiment setup on NS-3. The first
experiment compares the performance of DQN-based CUBIC
against existing congestion control algorithms. The performance
is compared by transmitting NewReno, CUBIC, DQN-based
TCP congestion control algorithm v2, and the proposed
algorithm in a single flow. The experiment time is 100 seconds,
and the RTT of the experiment environment is 100 ms. Link
bandwidths of 50 and 100 Mbps are used. The second
experiment compares the average throughput and recovery time
in a low-latency and wide bandwidth network. The experiment
time is 50 seconds, and the RTT of the experiment environment
is 10 ms. A link bandwidth of 500 Mbps is used.

IV. EVALUATION

A. Average throughput comparison during single flow

Fig. 3. Average throughput of each congestion control.

Figure 3 is a graph comparing the average throughput of
each congestion control simply during a single flow. NewReno,
which is based on AIMD and has a Cwnd reduction index of 0.5,
always had the lowest average throughput. However, DQN-
based CUBIC generated lower congestion than CUBIC. Even
when congestion occurred, the recovery speed of Cwnd was
faster than DQN-based TCP congestion control algorithm v2, so
the average throughput was the highest.

B. Comparison of average throughput and Cwnd recovery

Fig. 4. Cwnd comparison under wide bandwidth and low-latency.

Figure 4 is a graph comparing the Cwnd of CUBIC and
DQN-based CUBIC in a low-latency and wide bandwidth
network environment. Even in an ideal network environment
where there is no link problem, CUBIC causes congestion
because of its fixed algorithm, and has an average throughput of
474.27 Mbps. However, DQN-based CUBIC operates to
maintain maximum Cwnd without congestion after learning and
has an average throughput of 481.49 Mbps.

Fig. 5. Cwnd comparison in a rapid Cwnd reduction situation.

Figure 5 is a graph comparing the recovery time after
reduced Cwnd in a low-latency and wide bandwidth network
environment. Three seconds after the experiment begins, the
link environment deteriorates and Cwnd decreases significantly,
after which it rises to the maximum throughput again. CUBIC
takes approximately 15 seconds, whereas DQN-based CUBIC
takes approximately 20% lower, i.e., 12 seconds. Furthermore,
the average throughput up to approximately 20 seconds, when
the Cwnd rise of CUBIC was completed, was 431.84 Mbps for
CUBIC and 445.63 Mbps for DQN-based CUBIC, showing an
improvement of approximately 3% in the average throughput.

V. CONCLUSION
In this paper, we propose DQN-based CUBIC and conduct

performance experiments in the NS-3-based experimental
environment. When the link bandwidth is 50 and 100 Mbps,
DQN-based CUBIC has higher average throughput than existing
congestion control algorithms. In an environment with a wide
link bandwidth of 500 Mbps and low-latency of 10 ms, DQN-
based CUBIC showed an average throughput improvement of
approximately 2%. The time taken to recover the significantly
reduced Cwnd owing to packet loss is reduced by 20 %.
However, the throughput is not significantly improved because
of the increase in RTT as high Cwnd is maintained. In future
research, we will modify the algorithm to consider RTT in the
reward function to improve the average throughput further.

ACKNOWLEDGMENT
This research was supported in part by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by Ministry of Education (No. NRF-
2018R1A6A1A03025109) and by National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MSIT) (No. NRF-2019R1A2C1006249).

REFERENCES
[1] M. A. Alrshah, M. Othman, B. Ali, and Z. M. Hanapi, “Comparative study

of high-speed linux tcp variants over high-BDP networks,” Journal of
Network and Computer Applications, vol. 43, pp. 66-75, 2014.

[2] G. H. Kim, et al., “Performance Evaluations of TCP in 5G mmWave
Cellular Network,” J. KICS. Vol. 46, no. 12, 2021.

[3] S. J. Seo and Y. Z. Cho, “Fairness Enhancement of TCP Congestion
Control Using Reinforcement Learning,” International Conference on
Artificial Intelligence in Information and Communication (ICAIIC),
IEEE, pp. 288-291, 2022.

[4] M. Allman, V. Paxson, ICSI, and E. Blanton, “TCP Congestion Control,”
RFC 5681, September 2009.

[5] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly High-Speed
TCP variant,” ACM SIGOPS Operating Systems Review, vol. 42, pp. 64-
74, July 2008.

420

