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Abstract—Intent-driven network (IDN, or intent-based net-
work, IBN) is a novel networking paradigm, which can enable
user intents to drive network management autonomously and
improve the network’s operational efficiency. Although artificial
intelligence (AI) has been found for several applications to the
IDN, there lacks a systematic discussion and research on this
topic. In this work, we present a survey of the application of AI at
each layer of IDN. Then, a general IDN management architecture,
State-Action-Intent (SAI), is proposed. The presented SAI is a
new IDN implement framework to automate the operational
intents in a closed loop to overcome the challenges of complex
network services. To verify the availability and effectiveness
of SAI, a proof-of-concept demonstration is provided, and the
obtained performance is discussed.

Index Terms—Artificial Intelligence, Intent-driven Network,
Network Architecture

I. INTRODUCTION

Future network management will be under tremendous
pressure with the expanding network scale as the user demands
changes with diverse business applications. While the next
generation of network updates, network management could
be enhanced by two technical routes, which are using smarter
and more efficient network architectures and adopting artificial
intelligence (AI) - based management algorithms. Intent-driven
network (IDN) is an emerging network architecture, which
originates from a software-defined network and inherits the
characteristics of decoupling the data plane and the control
plane and the advantages of facilitating centralized control
and management of different types of networks [1]. This
architecture ensures that the IDN is flexible, reconfigurable,
open, and customizable. Great results were achieved in the
intent refinement system [2]. It provides a facilitative interface
for interaction between users and the network and plays a very
important role in IDN.

As it is known, AI is a new technology science which
has been proposed to reduce human interference and hence
improve network automation and security for future communi-
cation networks. Especially in large-scale network applications
become very popular. A lot of work has been done to realize
the autonomous management of the network in general [3],
[4]. In 2017, the ETSI has proposed a Zero-touch network
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and Service Management (ZSM) framework to achieve zero-
touch management of end-to-end services across different
management domains, providing an important tool for closed-
loop networks. In [3], closed-loop automation within the ZSM
is reviewed briefly and a methodology that uses intents to
coordinate hierarchies of closed loops is presented; however,
this work lacks a comprehensive description on the application
of AI in various layers. Intelligent intent based networks
concept and trial results are presented in [4] with the feasibility
of automatically assembling self-learning closed loop micro-
services into intent specific automation pipelines, however the
paper only applies AI specifically to one layer. The purpose
of this paper is to fill this gap by providing an overview of
the existing the application of AI in each layers of an IDN
network in literature.

Hence a comprehensive approach should be considered to
combine the advantages of IDN and AI to achieve more
efficient network structures and algorithms. The authors in
[5] discussed the vision of the future autonomous network
and the challenges of improving network performance. A
self-management framework and current technologies and re-
maining challenges are summarized in [6]. The above articles
are to provide the autonomous network architecture, but do
not give an explicit example of an AI application. In this
paper, we provide a novel intelligent autonomous network
architecture State-Action-Intent (SAI), in which demands can
be accomplished using AI techniques in each layer of the
structure. Meanwhile, we apply a use case to verify the
availability and effectiveness of SAI.

The main contributions of this article are as follows:

• The purpose of this paper presents a brief survey on AI
applications to IDN. Each layer of IDN is divided into
three functional modules and described in detail.

• A SAI architecture is proposed, which can be flexibly
configured in different scenarios. The architecture is
divided into three layers and two operational mechanisms,
forming a dual-driven, closed-loop service architecture.

• We provide a use case to verify the availability and
effectiveness of SAI.

The rest of this article is organized as follows. In section II,
we present a basic background about IDN, the main network
architecture and a general view. In section III, we review

413978-1-6654-9927-9/22/$31.00 ©2022 IEEE APCC 2022



relevant work on AI for IDN and present our contributions
to this survey. In section IV, we introduce a new intelligent
dual-drive network architecture. In section V, we discuss a
use case to verify the availability and effectiveness of our
proposed architecture. Finally, the conclusions and future work
are described in Section VI.

II. A GENERAL VIEW ON IDN ARCHITECTURE AND KEY
TECHNOLOGIES

In this section, we provide an essential architecture and
a general view on IDN. The IDN architecture consists of
three layers and two interfaces. This is well illustrated and
demonstrated in Fig. 1.

A. IDN Architecture

Each layer is described in detail as follows.
Business application layer is mainly concerned with col-

lecting user intent and translating it into a uniform format for
machine parsing. Among them, user intent contains intrinsic
intent generated from within the system, and extrinsic intent
entered from outside by the manager or server. Intrinsic and
extrinsic intent are expressed in different forms, where the
former usually uses network information parameters to reflect
the current network situation, and the latter is expressed in
more diverse forms, such as voice, text, gestures, etc.

Intent-enabled layer is the core of the IDN. It consists
of control, management, and decision-making on the network
not only to analyze the results of intent translation but also
to enable unified orchestration of the underlying network
resources.

Infrastructure layer is a collection of network data capture
tools. Data capture tools on the infrastructure layer can collect
situational information and policy configuration parameters
and can assist intelligent decisions, considering various effi-
ciency metrics, i.e., bandwidth, delay, topology, etc.

The specific definitions of the two interfaces are as follows.
Intent northbound interface (NBI) is one of the key

features, for users to access, develop and manage the network.
By making use of the controller development of upper layer
business, user interaction with the network becomes more
friendly. With the diversity of business applications, there is
need for diversity, rationality, and openness in NBI.

Intent southbound interface (SBI) is one of key enablers
of IDN implementation where decoupling the data plane from
the control plane can be enhanced to function as programmable
control plane. SBI has a standard interfaces to communicate
with the infrastructure layer.

B. A General View on IDN

In the subsections, we share a general view from two
aspects. On the one hand, the whole network can be analyzed
horizontally into three layers and two interfaces. The function
of each component has been discussed in detail in the previous
subsection. On the other hand, the whole network architecture
can be divided into intent realization and intent guarantee from
the vertical analysis, which are analyzed in detail as follows.

Fig. 1. IDN architecture and key technologies.

The intent realization consists of intent generation, intent
translation, policy generation, and configuration deployment.
Among them, intent is mainly generated by users, who may be
operators, managers or intelligent machines. Later, the intent
is converted into a machine-understandable language by a
unified specification approach; the system develops a policy
that can be executed based on the physical link information
and the user intent. The intent guarantee provides guarantees
for the intent realization process, which mainly consists of sta-
tus monitoring, policy verification, abstraction, and feedback.
The process obtains network status information through the
underlying physical network components to verify whether the
network service meets the user’s needs and the system feeds
the results back to the user, forming a closed loop.

In summary, IDN is a programmable and scalable architec-
ture with its significantly less complexity for network deploy-
ment. Its closed-loop design can better respond to the dynamic
network state and various user requirements. However, most
solutions are based on manual implementation. At present,
the application of AI in various fields is blooming. If AI is
applied to IDN, it will make IDN more intelligent, concise and
efficient. In Section III, a detailed survey on the application
of AI for IDN is given.

III. A BRIEF SURVEY ON AI FOR IDN

In this section, we conduct an extensive literature review
for each category and discuss available techniques from the
application of AI in the business application layer, the intent-
enabled layer, and the infrastructure layer.

A. Application of AI in Business Application Layer

We provide a brief survey of the business application of AI
in IDN, where intent perception, intent translation, and intent
conflict detection.

Intent perception refers to extract the potential purpose
of users and decompose their abstract intents into easy-to-
execute ones. The intent perception data comes from both
intrinsic and extrinsic intent. Intrinsic intents are the raw
data obtained from the internal infrastructure layer of the
network, and extrinsic intents are representing in the form
of text and voice. Recently, two approaches were mentioned
in [7]: Natural Language Processing (NLP)-based language
analysis and rule-based parsing algorithm. The former can
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allow various forms of input, but it is difficult to implement;
the latter is set according to pre-set rules, which is easy to
implement but only has a single input form.

Intent translation means to resolve users’ intents into the
corresponding network configuration policies. The translation
can be classified into template-based and syntax-semantic-
based. Among them, template-based translation requires users
input depending on the template, while the translation based
on syntax and semantic aims to extract semantic information
through the syntax of different types of languages. In [8],
an intent engine, iNDIRA, is described to provide reliable
and simple communication between users and the network.
It mainly uses natural language and ontology to convert
definition queries into corresponding network commands, and
then reconfigure resources and policies. Therefore, the users’
intents can be better presented through iNDIRA.

Intent conflict detection is designed to prevent disagree-
ments between multiple intents, resulting in network services
that do not fulfill the reality of the users’ needs. Intent conflicts
can be divided into two categories: direct and indirect. Direct
conflicts are easy to detect, while indirect conflicts are more
difficult to detect. In [9], a supply chain network scenario is
considered where an intent based networking is employed to
address the complexity, dynamics and heterogeneity of the net-
work. The proposed controlled natural languages technology
is used to resolve the conflict between intents and prevent the
generation of invalid policies.

B. Application of AI in Intent-enabled Layer

The intent-enabled layer is mainly responsible for control-
ling, managing and making decisions in the network. The
application of AI in the intent-enabled layer is mainly dis-
cussed and analyzed from the following three aspects: policy
refinement, policy mapping, and policy conflict detection.

Policy refinement focuses on splitting high-level abstract
policies into executable configurations. Methods of refinement
can be segmented into three types: rule-based transformation,
classification-based refinement and case-based reasoning, and
logic-based approaches. Of which, the first one is refined
according to pre-set rules. The second is mainly implemented
with the help of a range of classification techniques. The third
is based mainly on the research of reasoning to accomplish
the division of policies, which has less automation. Currently,
Karimi et al. [10] propose an attribute based access control
policy extraction method based on unsupervised learning. This
method can not only filter all aspects of the policy, improve
the refinement accuracy, but also complete the work in the
case of incomplete access log records.

Policy mapping is the process of matching the intent to
the best policy in the policy repository. According to the
scope of mapping, it can be split into local and global. Local
mapping refers to constructing cost functions within the range
of optional strategies, and global mapping is to build energy
functions using global optimization theory. In [11], an intent
defined optical network architecture is proposed. The archi-
tecture focuses on a multi-feature extraction method based on

a deep neural network algorithm, which can quickly extract
diverse features of different services and accurately identify
service intent. It uses Long short-term memory (LSTM) to
extract keywords and map user intent to the corresponding
network constraint parameters. After that, it connects to net-
work components through the Openflow protocol to model the
mapping relationship between services and intents.

Policy conflict detection is mainly to avoid blocking in the
system and to check the policy in advance. Based on the inter-
section of policy matching domains and the actions performed
by the policies, several conflict relations of policies are given:
mutual exclusion, redundancy and override. Yang et al. [11]
argue to focus on a guarantee mechanism based on the deep
neural evolutionary network (DNEN), which can extract depth
fault features and accurately find the real failures when a large
number of alarm information appears. DNEN can continuously
change and modify the weights during the training process.
Therefore, it can go beyond the local optimum to find the
global one, thus it can better locate failures during the network
intent configuration and ensure highly accurate fault location
in large-scale networks.

C. Application of AI in Infrastructure Layer

This subsection describes the application of AI in the
infrastructure layer is mainly discussed in three aspects: policy
deployment, policy verification, and situation awareness.

Policy deployment refers to running the generated policy
in the current network environment. The operation of the
policy drives the allocation and scheduling of resources in
the network. Here, resources include three aspects, the first is
physical resources; the second is the platform; the third is the
service function chain. In [12], a new system, LUMI, enables
operators to talk with the network. The input of the system is
a natural language expression of intent, which is encoded and
labeled by bi-directional LSTM and conditional random field
entities, enabling intent-to-instruction conversion. And then,
the system maps the commands into Merlin to manage and
control the network resources. Therefore, the system realizes
the whole process from intent input to resource deployment.

Policy verification means verifying that the deployed policy
not only meets the needs of users but also falls within the
bearer range of the network. It is analyzed and verified in three
aspects: the rationality of resource allocation, the feasibility
of policy deployment, and the correctness of policy execution.
Bonfim et al. [13] proposed an automatic policy refinement
system. The system contains a semantic verification module
that analyzes policies by using a description logic semantic
reasoner. Moreover, the verification of policy enforceability
is achieved by using a description logic inconsistency valida-
tion method. Ultimately, the whole system allows for formal
verification of network services.

Situation awareness is meant to predict future trends and
thus collect information on network dynamics. It can be di-
vided into active and passive. The former collects information
when the network is operating normally; the latter collects
information when the network is abnormal to infer the cause

415



























































 


























































































  

































Fig. 2. SAI architecture.

of the failure. Khan et al. [14] introduce a neural network
multilayer perceptron (NNMLP) in the network architecture,
which is used to periodically receive the resource state and up-
date the system according to future state requirements. Abbas
et al. [15] employ an intelligent update and assurance engine
to handle scalability and assurance of runtime resources. This
mechanism uses a recurrent neural network LSTM model
to predict resource utilization and update the overall system
configuration parameters.

IV. A SAI BASED ON IDN REFINEMENT

In this section, we propose a new architecture State-Action-
Intent (SAI). The architecture is simple and straightforward,
as shown in Fig. 2.

A. The Architecture of SAI

SAI is an emerging concept in networks to automate a
number of operational tasks in closed-loop to overcome the
challenges of complex network services. We describe each part
in detail as follows.

Intent is derived from user needs and ideas to drive the net-
work to perform a series of operational services to overcome
the changes of user demands in complex scenarios. To provide
better services for users, the network needs to constantly mine
and analyze users’ intents. We divide the process of intent
into intent perception, intent translation, and intent conflict
detection. Among them, intent perception can use Generative
Adversarial Networks (GAN) to perform data mining. Intent
translation is usually implemented by using, for example, NLP,

GAN, LSTM, etc. Intent conflict detection can be selected
from multilayer perceptron for analysis and processing.

Action refers to the process of developing a policy for the
realization of user intent. Facing different problems in various
scenarios, the generation of policies is similar to the process
from zero to one. But in most cases, the completion of intent
requires a combination of multiple policies to form a new
policy, which reflects the idea of from zero to one. We divide
the policy generation process into policy mapping, policy
refinement, and policy conflict detection. In policy mapping,
the existing neural network and LSTM can implement. In
policy refinement, unsupervised learning can be handled well.
In policy conflict detection, DNEN can accurately find the real
fault according to the fault characteristics.

State refers to the perception, understanding, and prediction
of the operating state of the network. Typically situation
awareness is performed by the network sensors deployed in
the network for information acquisition. With the help of state
information, administrator could better manage the network.
Situation prediction is to plan and deploy the network status
in advance to better maintain the normal operation of the
network. Therefore, we divide the situation awareness into pol-
icy deployment, policy verification, and situation awareness.
Through research, it is found that AI has many methods in
situation awareness. For example, GAN, NNMLP, LSTM, etc.
can all be used for network prediction.

B. Working Mechanisms
In this subsection, top-down task-intent-policy loop and

bottom-up perception-policy loop are the two core working
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Fig. 3. An auxiliary path generation use case architecture.

mechanisms are discussed.
Task-intent-policy loop is one of the cores of the SAI,

and it is also the key operating mechanism for the entire
architecture to achieve closed-loop self-driving. The loop runs
through the intent translation on the Intent and sends the
results down to the Action via NBI. Action maps the received
translation results to the policies in the policy library to gen-
erate network policies that can be safely executed. Generated
policies are delivered to State via SBI for policy deployment
and enforcement. The loop can greatly improve the sense of
user-system interaction while reducing human influence in the
circuit and facilitating the automation of the network.

Perception-policy loop is one of the important key tech-
nologies of SAI, which provides a guarantee for the closed-
loop automation of the architecture. The loop runs from the
bottom up, and the State obtains network situation infor-
mation and sends it back to Action through SBI. Action
makes comprehensive analysis and judgments based on current
network conditions and user intent, and then makes dynamic
adjustments to network policies. The system feeds back the
results of policy adjustment to users and network physical
devices through NBI and SBI, respectively, to form a closed-
loop. The loop is driven by the situation and can facilitate
autonomous decision-making and adjustment of the network,
which is a key mechanism for network closure automation.

V. PROOF-OF-CONCEPT DEMONSTRATION OF SAI

In this section, we discuss a use case to verify the avail-
ability and effectiveness of SAI. This use case is to enable
intelligent auxiliary path generation to assist administrators in
decision making.

A. Use Case Architecture

The use case architecture is shown in Fig. 3. In Intent, users
generate intents on demand and translates the natural language
into a language that can be understood by machines.

This part can refer to the previous research [2] of our
research group. Therefore, in this use case, it is considered

that the intent has been accurately translated, and then the
translation result is sent to the Action to drive the formulation
and generation of the policy. At the same time, the State stores
the perceived bandwidth, delay, and topology information in
real time, and uploads it to Action. In Action, different path
policies are formulated based on user intent and real-time
perception information.

After the path policy is issued to State for execution, the
result of the execution is fed back to the user, forming two
loops. The intent-driven and situation-driven mechanisms are
well demonstrated.

B. Algorithm Design
In the subsection, the algorithms for each part of the use

case architecture are designed in detail as follows.
State mainly senses the topology, bandwidth and delay of

the network. Network topology is obtained by the controller
sending link layer discovery protocol (LLDP) packets. Net-
work bandwidth is obtained by using the OpenFlow protocol
to obtain port statistics. The delay between switch nodes
is calculated by using the transceiver timestamp of LLDP
messages and the controller measured by echo messages to
switches.

Action mainly use Dyna-Q algorithm and Dijkstra algo-
rithm to realize auxiliary path formulation. Dyna-Q algorithm
combines model-based and non-model-based intensive learn-
ing. Dijkstra is a typical shortest path routing algorithm that
computes the shortest path from one node to all other nodes,
which is not described in detail here. The following is a
detailed description of the Dyna-Q algorithm.

In the Dyna-Q, bandwidth and delay are considered to
calculate the reward function. The specific expression of the
reward function is

Reward = αDelay + βBandwidth, (1)

where α and β are weights. The Delay is specifically
expressed

Delay =
2

π
arctan(dmn −

∑
dmi∈TPm

dmi

|TPm|
), (2)

where dmn represents the element of m row and n column
of the delay. TPm represents the total number of links in m
row of the topology.

∑
dmi∈TPm

dmi represents the sum of the

delays corresponding to the connected links in m row. The
Bandwidth is specifically expressed

Bandwidth =
2

π
arctan(0.01(bmn −

∑
bmi∈TPm

bmi

|TPm|
)), (3)

where bmn represents the element of m row and n column
of the bandwidth.

∑
bmi∈TPm

bmi represents the sum of the

bandwidths corresponding to the connected links in m row.
Intent mainly refers to the intent generated by the user. We

consider that that the intent has been accurately translated,
and the translation result is sent to the Action to drive the
formulation and generation of the policy.
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(a) The average duration of intent refinement.















         


















 





(b) Link packet loss rate over time.

Fig. 4. The performance of the presented SAI.

C. Realization

We use python 2.7 to implement the full process of SAI.
The network topology is defined in Mininet. Mininet is a
virtualized network simulation tool that can create a virtual
network containing hosts, switches, controllers, and links.
As for the SDN controller, we used RYU, which controls
switches through the OpenFlow protocol. We simulated a
communication network with 14 network nodes, and each
network node corresponds to a switch, and each switch has
a host connected. Therefore, path selection in the network can
be considered as a routing problem between switches.

D. Result Analysis

The use case senses information about the network data in
real time to make the appropriate network path selection. We
use the RYU controller, which is based on logical sequential
cycle execution. We tested the network dynamic real-time
parameters between two fixed nodes in 10 cycles and generated
the corresponding path policies during each cycle. The Dyna-
Q algorithm and Dijkstra’s algorithm are used to calculate
the paths. In view of the Fig. 4, a comparative analysis of
the two performance aspects, the number of path hops and
the average transmission time, is provided. From Fig. 4(a) we
can get the number of path hops calculated by the Dyna-Q
algorithm is significantly less than it calculated by the classical
Dijkstra algorithm. Meanwhile, the Ping tool was used to test
the transmission time between two nodes, and it is clear that
the average transmission time of Dyna-Q is lower than the
average transmission time of Dijkstra’s algorithm, as shown in
Fig. 4(b). In the experiments, we also conducted tests between
two random nodes, and the overall results of the tests showed
that the algorithm supported by AI performs relatively well.
Therefore, we introduce AI into the network architecture to

optimize configuration and efficient use of resources, while
allowing the network to have more available resources to
continuously upgrade and develop new services.

VI. CONCLUSIONS

We presented an systematic survey on the application of AI
in each layers of IDN. We first summarized the motivation for
the application of AI in networks, which leads to a brief survey
on AI applications to the different modules of the various
layers of the IDN, and we proposed a new network architecture
SAI which will enable the application and implementation of
AI at all layers of the IDN. To verify the availability and
effectiveness of SAI, a proof-of-concept demonstration was
proposed, and the obtained performance was discussed.
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