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Abstract—Cognitive Radios (CRs) improve spectrum utiliza-
tion by intelligently sensing and learning from the radio environ-
ment. Spectrum sensing is one of the most pre-requisite jobs for
the SUs before they access the PU channel opportunistically. This
paper employs various machine learning tools in a collaborative
environment to perform sensing. First, the sensing time is recon-
figured to maximize the spectrum utilization leading to low cost
and high channel throughput. In the first step ensembled classifier
estimates sensing time. Next, the soft energies of the different
categories of false sensing users (FSUs) are cleaned using the
denoising Autoencoder before soft decision fusion schemes. The
ensemble classification method in this paper leads to an accurate
estimation of the channel for the target detection, false alarm, and
wireless channel conditions. The result shows that the ensemble
classifier with the AdaBoost method can predict efficiently with
a better F1 score, accuracy, and Matthews correlation coefficient
(MCC).

Index Terms—Reconfigurable Sensing Time, Ensemble Clas-
sifier, Random Forest Algorithm, Neural Network, AdaBoost,
Autoencoder

I. INTRODUCTION

The radio spectrum investigations show that the allocated
spectrum to licensed users is underutilized. Some of the fre-
quency bands are fully utilized, some are partially in use, and
the others are mostly unemployed. Cognitive radio (CR) has
the intelligence that senses and learns from the environment.
It adapts its internal states, such as the transmitting power,
carrier frequency, and modulation scheme to provide reliable
communication [1]. Secondary users (SUs), as opportunistic
users, try to access the primary user (PU) channel when the
PU is not active [2]. Cooperative sensing is a more appropriate
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choice to deal with multipath fading and ambiguities in the
wireless channel [3]. A centralized collaborative model has a
fusion center (FC) that collects sensing notifications from the
individual contributing users and takes final using hard, and
soft-decision schemes [4].

One of the threats to the centralized cooperative model is
the presence of false sensing users (FSUs) with fake sensing
notifications to the FC. The effects of malicious users (MUs)
and their prevention schemes are studied in [5]. Heuristic algo-
rithms are studied in [6] to optimize detection and false alarm
probabilities. A reconfigurable wireless network is discussed
in [7] that delivers a thorough analysis of the method and
strategies. Optimization of the individual channel parameters
such as sensing period to maximize throughput with the con-
straint to reduce interference for the PU is discussed. The CRN
throughput is maximized by keeping the quality of service
(QoS) for the PUs with optimal power allocation and sensing
time [8]. A concise survey is illustrated in [9] that shows the
role and importance of machine learning (ML) and AI-based
learning methods. [11] has realized the reinforcement learning
concept to achieve cognition cycle (CC) for unlicensed users.
A considerable time is consumed in spectrum sensing when
using traditional spectrum sensing approaches. Therefore, the
work in [12] has examined deep learning and convolutional
neural network (CNN) based spectrum sensing systems.

In the cooperative model, an increase in the number of
sensing samples for the collaborative users guides to higher
sensing accuracy, resulting in more energy consumption and a
reduction in the channel throughput. On the contrary, optimal
sensing sample choice for the individual and user in coop-
eration benefits-improved throughput, low sensing cost, and
guaranteed sense performance with minimum error in sensing.
An ensemble classifier is suggested using the AdaBoost assem-
bling method along with denoising autoencoder that cleans the
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Fig. 1. CSS with reconfigurable sensing time.

sensing data contents from the reports of FSUs.

II. SYSTEM MODEL AND BACKGROUND

This work carries a single PU channel and pursues an energy
detector for spectrum sensing in Figure 1. The H0 and H1

hypothesis test of the jth user out of m users for sensing is
as
H0, xj(l) = vj(l)

H1, xj(l) = gjc(l) + vj(l)


, j ∈ {1, ...,m} , l ∈ {1, ..., k} .

(1)
Eq. (1) has gj as the channel gain for the jth user. c(l) is the
PU signal in the lth slot. The vj(l) is Gaussian noise with
mean zero and variance σ2

vj between the jth user and PU.
The sensing energy of the users has total sensing samples k =
2Bτs. Here B shows the bandwidth with τs sensing period.
An energy representation of (1) in the k number of sensing
samples are as

Ej(i) =





li+k−1
l=li

|vj(l)|2, H0

li+k−1
l=li

|gjc(l) + vj(l)|2, H1




. (2)

The soft energy reports under satisfactory sensing samples
converge to the Gaussian random variable is

Ej ∼


N

�
µ0 = k, σ2

0 = 2k

, H0

N
�
µ1 = k(ηj + 1), σ2

1 = 2k(ηj + 1)

, H1


, (3)

where
�
µ0, σ

2
0


and

�
µ1, σ

2
1


are the mean and variance

results of the energy distribution, while ηj is jth user channel
signal-to-noise-ratios (SNRs).

Figure 2 shows the sensing and data transmission time of
the cooperative users are τs and T − τs. The sensing time
between the cooperative users is assumed to be synchronized.

Fig. 2. Sensing and data transmission time.

The cooperative environment in this paper is also considered
to be protected against the false sensing notices of Yes False
Sensing (YFS) and No False Sensing (NFS) users. The normal
SUs have entirely different energy distributions in the H0 and
H1 hypothesis. The regular users report high energy statistics
in the H1 and low energy statistics in H0 to the FC. Similarly,
the YFS reports high energy statistics in both hypotheses to
the FC, while the NFS always reports low energy. The YFS
contribution reduces the throughput of the SUs, and the NFS
presence is the primary cause of interference for the licensed
PUs.

III. SENSING TIME RECONFIGURATION AND DATA
DENOISING

This section illustrates sensing time estimation using the
proposed ensembled classifier. The estimated sensing samples
is then used in the energy reports of the cooperative users.
Finally, sensing data is denoised and cleaned with the DAE
before employing soft combinations.

A. Dataset Reconfigure Optimal Sensing Time

This section examines the construction of the dataset for the
ML classifier. The false alarm probability representation is as

Pf = Q


 (β − µ0)

σ2
0



 = Q


 (β − k)√

2k


 , (4)

where B is the threshold and Pf is the false alarm probability.
Likewise, expression of the probability of detection Pd when
H1 is true are as

Pd = Q


 (β − µ1)

σ2
1



 = Q


 (β − k (ηj + 1))

2k (ηj + 1)


 . (5)

The ensemble classifier finds the optimal sensing samples
using detection probability as

Pd = Q



√

2Q−1 (Pf )−
√
kηj




2 (ηj + 1)



 , (6)

where Q ( . ), and Q−1 ( . ) shows the complementary and
inverse complementary Gaussian distribution functions. This
develops a dataset to train the ensemble classifier and to
predict sensing samples. The feature vector or example of
a data point in the dataset is represented with a vector
x =


ηj Pf k Pd


. This allows the ensemble classifier

to be trained with (ηj , Pf , Pd) input and kj output label.

366



B. Classification with the AdaBoost

As individual classifiers may result in biased prediction,
ensembling the categories of different classifiers is a more
acceptable option.

The soft energy reports of the users found a history matrix
with normal and corrupted data as

X =
[
x1 x2 . . . xn

]T
, i ∈ {1, 2, ..., n} , (7)

where x1,x2,x3 and xn are the n feature vectors that consist
of the target detection, false alarm and SNRs as the input
and sensing samples as the response. The adaptive boosting
(AdaBoost) construct more strong classifier with ensembling
of weak classifiers. In this work the data set is represented as:
T = {(xi, yi)}ni=1 The training set T is an n×(m+1) matrix
also represented as

T =
[
xi

∣∣yi
]
, i ∈ {1, 2, ..., n} , (8)

where xi are the input features vectors to be classified with
the ensembling method, the input training data to the ensemble
classifier in the matrix form T has S and Y submatrices. Here
S is the n feature matrix and Y as the n×1 output label matrix
consisting of H0 and H1 hypotheses.

In AdaBoost, each rth classifier is set with decision weights
by knowing the predictions of the (r − 1) classifiers to express
the boosted classifier as

er−1 (xi) =

r−1∑
p=1

αphp (xi), p ∈ {1, ..., r − 1} , i ∈ {1, ..., n} ,

(9)
where hp(xi) is the value predicted by the pth classifier and αp

is the weight assigned to the classifier prediction. Similarly, the
rth classifier prediction is included with hr(xi) as prediction
and αr optimum weight. The above can be written as

er(xi) = er−1(xi) + αrhr(xi), (10)

where er (xi) is the compound predicted value of r classifiers.
We are interested in a closed form formula for αr, which
assigns αr a value such that the total error of prediction is
minimized. The expression for the weight αr in final form is

αr =
1

2
ln

(
1− em
em

)
, (11)

where em = We/W is the weighted error rate of the weak
classifier hr.

In case of fixed T reduction in the sensing duration τj leads
to a higher throughput. As τj =

kj

fs
has a sampling frequency

fs. Therefore, higher throughput is obtained by lowing the τj
through reduced kj . The re-configurable network estimates the
optimum samples kj using the ensemble classifier. The energy
spent in sensing is directly proportional to the sensing duration
and is represented as

s(i) =
m∑
j=1

(Ej(i)× τj), (12)

where s(i) is the sensing energy consumed by the cooperative
users based on the reconfigured sensing samples kj , therefore,
the increase in kj = τj×fs is expected to increase the sensing
cost of the system.

C. Data denoising through Autoencoder

The Autoencoder is the fully connected feed-forward neural
network, where the inputs are equal to the output and trained
without any label information. This paper employs a variant
of the simple Autoencoder that is DAE. The DAE offers more
features than the simple AE, such as reconstructing the input
from attacked or corrupted sensing data. For example, for a
given x in Figure 3, the encoder transforms deteriorated and
attacked input into hidden or latent space representation as h
such as

h = f (W1s+ b) . (13)

This f is a non-linear activation function such as the sigmoid
function. W1 ∈ IRn×m is the weight matrix, and b ∈ IRn is
optimized in encoder with n nodes in latent space. Then, the
decoder evolves the latent space into a reconstructed vector,
ŝ, at the output layer as

ŝ = g (W1s+ c) . (14)

In order to improve the learning efficiency W1 = W2
T . The

training objective of the DAE is to find the optimal parameters,
ψ = {W1, b, c} that minimize the reconstruction error as

min
ψ

n∑
i=1

∥si − ŝi∥
2

. (15)

Fig. 3. Denoising Autoencoder.

IV. RESULT AND DISCUSSIONS

This section shows a performance comparison of the dif-
ferent classifiers such as k-nearest neighbor (KNN), neural
network, decision tree (DT), and proposed ensemble classifier.
First, the optimum sensing samples are estimated with the ML
classification. An energy detector is then used to follow the
modified sensing samples. This article evaluates the required
samples with the target detection, false alarm, and SNRs
expected from the cooperative SUs. Sensing performance is
then improved by cleaning the sensing contents using the
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DAE scheme. The dataset used to train and test the ML
classifiers is formed with target SNRs from -15dB to -10.25dB,
total reporting users of ten, and target detection probability
from 0.01 to 0.99. The associated number of samples is
computed with equation (6) in the first step. Therefore, we
added 40,000 pieces (features). For 20 levels of detection
probability ranging between 0.01 to 0.99, the false alarm
probabilities in the dataset are ten. Finally, the model is
trained using SNRs, false alarms, and detection probability
as the input features and samples as the output feature. The
sampling frequency and signal bandwidth values are 40KHz
with a frame duration of 100ms. Figure 4 shows the classifier
accuracy performance that shows high accuracy results of
the proposed ensemble classification method. The ensemble
classifier accuracy is followed by the DT, neural network,
and KNN. The result shows the worst accuracy results by
the GNB classifier. Next, in Figure 5, F1-score performance
shows high F1-score results for the ensemble classifier. Finally,
Figure 6 shows the classifiers’ authenticity with the Matthews
correlation coefficient (MCC) results.

Fig. 4. Classifiers Accuracy in estimating optimal sensing samples.

Fig. 5. Classifiers F1-Score in estimating optimal sensing samples.

V. CONCLUSIONS

The Raleigh fading environment follows CSS to achieve
better sensing reliability. To reduce the slow convergence of
the CSS, SUs have to report instantly with less time consump-
tion in sensing to ensure decision reliability. The estimated
optimal sensing time increases the channel throughput and
reduces sensing cost in the adjustable sensing time through the
proposed ensemble classifier. This paper proposed an ensemble

Fig. 6. Classifiers MCC in estimating optimal sensing samples.

classifier method to determine optimal sensing samples. The
users then use this modified sensing time, and soft energy
reports are determined. The energy reports are finally cleaned
and denoised through the DAE scheme in the paper. Accuracy,
F1-score, and MCC comparison are shown for various ML
classifiers.
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