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Abstract—In underwater search and rescue, it is very impor-
tant for underwater robot to reach the rescue position quickly.
Planning path in advance is very important to save rescue time
and energy consumption. Therefore, it is meaningful to find
a better and shorter path as soon as possible. As a common
method of path planning , RRT* has the disadvantages of high
cost and slow convergence. To solve these flaws, an improved
motion planner for underwater robots is proposed in this paper.
In this study, the simulation experiments were divided into two-
dimensional conditions and three-dimensional conditions, where
used point cloud of real underwater scene to find a better initial
solution. Based on RRT*, this paper finds the ancestor node
farthest from the sampling point and without collision in the
random tree as parent node, adds intermediate nodes in the path
according to the step size, and uses trigonometric inequality many
times throughout the process, so as to obtain an optimized path.
Through a large number of simulation experiments, the results
show that the cost of path is less and the convergence speed is
faster than RRT* and Q-RRT*.

Index Terms—path planning, Rapidly-exploring random tree
(RRT), path optimization, robot, sampling-based algorithms

I. INTRODUCTION

In the scene of underwater, the use of underwater robots is
an important means. Taking emergency search and rescue as an
example, in the shipwreck of the Oriental Star of the Yangtze
River in 2015, to rescue the survivors in the overturned hull,
robots need to enter the sunken ship for detection and rescue.
Another example is the trapped incident of the Thailand youth
football team in 2018. Due to the tortuous and narrow path , it
took rescuers many days to find trapped people. To improve the
efficiency of underwater operation, path planning has received
extensive attention.

Generally, path planning is to find a continuous path without
collision connecting start state and end state according to
criteria of shortest distance and time optimization. Currently,
common path planning algorithms include Dijkstra [1], A-
star (A*) [2], Artificial Potential Field (APF) [3], Probabilistic

Roadmap (PRM) [4], Rapidly-exploring Random Trees (RRT)
[5], and so on.

The Dijkstra compares various cases by traversing all nodes.
It has good robustness, but low efficiency [6]. A-star algorithm
adds heuristic search information compared with Dijkstra.
Although it speeds up the search efficiency, it is still not
suitable for high-dimensional space. The APF is a virtual
force method that simulates the motion of an object under the
combined action of attraction and repulsion, but it easily falls
into a local optimal solution [7]. The PRM is a sampling-based
algorithm that has good expressiveness in a high-dimensional
environment, but it is completely probabilistic and not optimal
[8]. Compared with these algorithms, RRT is a sampling based
algorithm, which depends on random sampling and collision
detection. RRT can generate a feasible path quickly without
establishing an environment model and is suitable for high-
dimensional situations [9]. However, the initial solution of
RRT is tortuous and cannot guarantee optimality [10].

RRT* [11] is proposed as an excellent variant of RRT to
obtain an optimized path by selecting a better parent node
and rewiring nearby nodes. The algorithm has probability
completeness and asymptotic optimality [12]. RRT* is a
milestone and has become the basis of subsequent research
work [13]. To improve the performance of the algorithm, many
scholars had proposed some improved algorithms. Jhang and
F. Lian [14] proposed the bidirectional RRT* algorithm (B-
RRT*), which can improve the convergence speed and use
the admissible heuristic method to selectively generate new
nodes to improve the path. The RRT*-smart [15] proposed by
Nasir et al. has two main characteristics: intelligent sampling
and path optimization. After the initial path is generated, the
trigonometric inequality principle is used to crop out redundant
nodes. When optimizing the generated path, it relies on the
generation of beacon nodes to reduce the path cost.

In addition, reducing path nodes can also speed up con-
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vergence speed and shorten the path length. Jeong et al. [16]
proposed Q-RRT*, which enlarges the set of possible parent
nodes by considering not only the nearby nodes as in RRT* but
also their ancestor nodes. The results show that the generation
path is better than RRT.

In general, scholars have made great efforts to improve
RRT*. Because the mechanism of selecting parent nodes has
not been changed, there are still some problems, such as path
redundancy, slow convergence and low efficiency. To solve
these problems, this paper proposes Smooth-RRT* (S-RRT*)
to further improve the performance The proposed algorithm
further improves the performance of initial solution quality
and convergence speed. The contributions of this paper are as
follows.

• Based on the idea of backtracking, the farthest ancestor
node is defined as the parent node, which ensures the
optimal temporary cost. It saves more time than selecting
the parent node in a vertex set of a selected space as in
RRT*.

• We add intermediate nodes in the unit of step size
between each node and its parent node, which maintains
the advantage of small step size to obtain a better solution.

• Experiments show that our algorithm has more advan-
tages for initial solution and convergence speed.

II. BACKGROUND

This part formalizes the path planning problem and analyzes
the primitive modules of RRT*.

A. Problem definition

Let S = (0, 1)d define the given workspace, where d is the
dimension of workspace. Let Soct ⊂ S be the obstacle region
and Sfree = S/Soct define the free region. Given starting
point Xstart and goal point Xgoal , then {S,Xstart, Xgoal}
defines a problem of path planning. A path σ : [0, 1] �→ S has
bounded variation, it is continuous. A path σ(τ) ∈ Sfree for
all τ ∈ [0, 1] , it is collision-free.

Furthermore, a problem of path planning is to find a
continuous path without collision σ : [0, 1] �→ Sfree. To
solve this problem, this paper builds a Path-Tree T = (V,E),
where V represents the set of path points in Path-Tree and E
represents the set of edges that connect points in V . That is to
say, the key of this paper is to find a path connecting starting
state and end state, by finding an ordered set of points that
avoids obstacles in a given space, and connecting these points
with straight lines.

Definition 1: Feasible initial solution. It refers to find a
collision-free path σ : [0, 1] �→ Sfree. And σ(0) = Xstart,
σ(1) = Xgoal.

Definition 2: Optimal solution. It refers to find a collision-
free path σ∗ ⊂ σ that minimizes the cost Cost(σ∗) such that
Cost(σ∗) = min{Cost(σ)}, where Cost(σ) is the distance
to reach to Xgoal along with a path σ.

when d = 3, assume that the vertex set of the final path is
defined as P , P = {p1, p2, ..., pN}, where N is the number of
path points. Let ‖ p2 − p1 ‖ represent the Euclidean distance

between p1 and p2. Therefore, our proposed optimization
problem can be expressed as

min
P

N∑
i=2

‖ pi − pi−1 ‖ (1)

s.t. C1 : N ≤ Nmax

C2 : p1 = Xstart, ,pN = Xgoal

C3 : pi ∈ Sfree

In the above formula, the goal of the optimization problem
is to minimize the total cost of the final path. C1 indicates
that the number of path points should be less than a given
maximum value Nmax. C2 indicates that the final path should
connect the starting point and the goal point. C3 indicates that
the final path is collision-free.

B. RRT*

RRT is a classical algorithm suitable for multi-dimensional
space. It can effectively solve problems such as complex
constraints in multidimensional spaces by avoiding spatial
modeling. It takes starting point as the root node and selects
leaf nodes by random sampling to generate a random tree.
If the leaf node reaches target point or the distance from
target point is less than the given threshold, a continuous
path connecting start point and end point will be found in
the random tree. As an excellent variant of RRT, RRT*
ensures asymptotic optimality, that is, with the increase in the
number of iterations, it will converge to the optimal solution.
RRT* improves performance by choosing the parent node
and rewiring the nearby nodes based on RRT, to significantly
reduce the cost of path.

III. PROPOSED

This section proposes the S-RRT* algorithm based on
RRT*, which can further reduce the cost from Xstart to Xgoal.
Two main modules of improvement are introduced in detail,
ChooseParent based on backtracking and AddNodes based
on step size.

A. Proposed algorithm

The S-RRT* in this paper explores space such as RRT*. In
RRT*, the method of selecting parent node for a new node is
to calculate the overall cost within a certain radius, and take
the node with the lowest cost as the parent node of the new
node. Therefore, the selection of radius is very important. The
larger the radius is, the better the initial solution that will be
obtained, but the calculation time will also increase because
of the doubling of the number of adjacent points.

To eliminate the influence of the radius element on calcu-
lation events, this paper abandons the radius parameter rather
than choosing the farthest ancestor node without collision as
the parent node.

In addition, the path finally generated by RRT* contains few
nodes and has a large step size. We found that a large step size
is not conducive to the generation a optimal path. Therefore,
once the parent node of the new node is determined, a series
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of intermediate nodes will be created. The pseudo-code of S-
RRT* is shown in Algorithm 1.

Algorithm 1: S-RRT*
input : the start point Xstart

the goal point Xgoal

the workspace S
the number of the iterations n

output: T
1 V ← {Xstart}; E ← ∅
2 T ← (V,E)
3 for i ← 1 to n do
4 Xrand ← SampleFree(i)
5 Xnearest ← GetNearest(T, Xrand)
6 (Xnew, σ)← Steer(Xrand, Xneareat, q)
7 if CollisionFree(Xnew, Xnearest) then
8 Xparent ← ChooseParent(T , Xnearest,

Xnew)
9 V ← V

⋃
{Xnew}

10 F ← AddNodes(Xnew, Xparent)
11 E ← E

⋃
F

12 end
13 if ‖Xnew −Xgoal‖ ≤ q then
14 V ← V

⋃
{Xgoal}

15 end
16 end
17 Return T

The primitive modules of S-RRT* is described as follows.
• SampleFree: It returns a randomly sampled state Xrand

in Sfree.
• GetNearest: It returns the vertex Xnearest closest to

Xrand in T . And it is determined by Euclidean distance.
• Steer: It returns a path connecting Xnearest and

Xnearest at the step size q.

B. ChooseParent

Inspired by RRT*, using the triangular inequality criterion
multiple times can further reduce the cost of the solution.
The process of ChooseParent in S-RRT* is to find the
reachable node Xparent from the ancestors of Xnearest. The
node will become a candidate parent node of xnew. Based
on trigonometric inequality, the cost of distance connecting
Xparent and Xnew will make the cost from Xstart to Xnew

lower than connecting Xnearest and Xnew. It searches only the
ancestors of Xnearest, not the nodes around Xnew. Different
from RRT*, fewer search nodes can significantly reduce the
computing time. The function Parent returns the parent node
of the current point. The pseudo-code of ChooseParent is
shown in Algorithm 2.

C. AddNodes

After observing the path generated by RRT*, we think
that the connection between Xnew and Xstart can be further
optimized by changing the direction in advance near the

Algorithm 2: ChooseParent
input : the Path-Tree T

the new node Xnew

the nearest node Xnearest

output: Xparent

1 Xparent ← Xnearest

2 while Xparent �= Xstart do
3 Xtemp ← Parent(Xparent)
4 if CollisionFree(Xnew, Xtemp) then
5 Xparent ← Xtemp

6 else
7 Return Xparent

8 end
9 end

10 Return Xparent

obstacles. Based on trigonometric inequality, the cost of path
will be significantly reduced. Due to the lack of nodes in the
path, we add intermediate nodes aimed changing the direction
in advance. The node used to optimize the path is created
in the AddNodes process. During the period, intermediate
nodes are created based on the initial step size q. This method
effectively reduces the cost of initial solution by maintaining
a fixed step size and inherits the advantage of a small step
size which results in a smoother path. The pseudo-code of
AddNodes is shown in Algorithm 3.

Algorithm 3: AddNodes
input : the new node Xnew

the parent node Xparent

the step size q
output: F

1 Dis = Distance(Xnew, Xparent)
2 Num = Dis / q
3 Dir = (Xnew-Xparent) / Dis
4 Xtemp ← Xparent

5 for i ← 1 to Num do
6 Xnode ← Xparent + i ∗ q ∗Dir
7 F ← F

⋃
{(Xnode, Xtemp)}

8 Xtemp ← Xnode

9 end
10 Return F

D. Analysis

Compared with RRT*, the algorithm proposed in this paper
improves performance by choosing the parent node and adds
intermediate nodes to path tree, which can reduce the cost of
the path. In RRT*, the method of selecting the parent node
is to first place all nodes within the range with Xnew as the
center and radius r into set U , then successively calculate
the current cost of each node as the parent node of Xnew,
and take the node with the lowest cost as the parent node of
Xnew. Obviously, the choice of radius parameter r has a great
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influence on the final result. When r is larger, the more parent
nodes available for Xnew to choose, the greater the possibility
of obtaining a better path, but the resulting time cost also rises
sharply.

Different from RRT*, S-RRT* discards the radius parameter
r and takes the farthest ancestor node as the parent node of
Xnew as shown in Fig. 1, which can greatly reduce the cost of
the path and the time overhead. In addition, by observing the
path generated by RRT*, there are many places to optimize
the path by turning in advance. We can find that the distance
between each node and the parent node is much larger than
the preset step size. We know that small step size can usually
generate a better path. Therefore, after choosing the parent
node, this algorithm adds the intermediate node according to
the step size, and the next node may find a better parent node.
Fig. 2 depicts the process.

(a) (b)

Fig. 1. The process of ChooseParent. (a) RRT*. (b)S-RRT*.

(a) (b)

Fig. 2. The process of AddNodes. (a) RRT*. (b)S-RRT*.

IV. EXPERIMENTS AND DISCUSSION

In this section, we compared the performance of RRT*, Q-
RRT* and S-RRT* in same environment. In the simulation,
experiments were carried out in 2D and 3D environments,
respectively. Where the 3D environment data is a 3D point
cloud of an underwater scene collected by sonar, and obstacles
are appropriately added for the objectivity of the experiment.
The experiments were run on Intel i5-7300K CPU with 8G
RAM.

A. Experiment in 2D Environment

The 2D environment is shown in Fig. 3. There are three
maps that represent simple, moderate and complex scenarios.
The size of each map is 800 × 800, the black areas are
obstacles. The comparative experiment includes two aspects.

The first aspect is the quality of the initial solution generated
by each algorithm. The second aspect is the convergence
speed of each algorithm and the optimal solution obtained by
convergence. The experimental result is the path generated by
2000 iterations.

(a) (b) (c)

Fig. 3. The environment of 2D. (a) Simple scenario. (b) Moderate scenario.
(c) Complex scenario.

In Fig. 4, the purple point represents the starting point,
the green point represents the goal point. As shown, all three
algorithms generated a path connecting the starting point and
the goal point. Experimental results verified the effectiveness
of the algorithm in initial path generation. what can be seen is
that, the path generated by RRT* is the longest, followed by
Q-RRT* whose path avoids many bends although not optimal,
the path generated by S-RRT* is the shortest due to closer
proximity to obstacles.

To overcome the randomness of sampling, 500 independent
experiments had been run for each algorithm. Table I shows
the cost of the path of three algorithms. Compared with RRT*
and Q-RRT*, the cost of S-RRT* is reduced by 9.39% and
1.61% in the simple scenario on average, reduced by 9.88%
and 3.69% in the moderate scenario, and reduced by 7.19%
and 2.54% in the complex scenario. These statistical data show
that S-RRT* has more advantages in the quality of the initial
solution.

TABLE I
THE COMPARISON OF COST

Scenario Algorithm Max Min Avg

RRT* 1320.18 1155.57 1221.72
Simple Q-RRT* 1170.62 1107.28 1125.06

S-RRT* 1118.40 1083.21 1106.94
RRT* 1372.10 1124.27 1201.88

Moderate Q-RRT* 1210.92 1084.36 1124.69
S-RRT* 1101.27 1077.38 1083.10
RRT* 1368.11 1104.08 1162.06

Complex Q-RRT* 1238.59 1074.62 1106.57
S-RRT* 1098.60 1069.76 1078.40

In Fig. 5, the convergence speed of the three algorithms
is shown, which is the result of the complex scenario. With
the increase in the number of iterations, the three algorithms
finally converged to the best state. However, when S-RRT*
iterated 1100 times, it produces the best path and keeps it,
which is the fastest of the three algorithms. In addition, the
path obtained by the convergence of this algorithm is also the
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(a) (b) (c)

Fig. 4. Comparison of the quality of the initial solution in 2D environment. (a) Simple scenario. (b) Moderate scenario. (c) Complex scenario.

best. The result shows that S-RRT* has more advantages in
convergence speed.

Fig. 5. Comparison of the convergence speed in 2D environment

B. Experiment in 3D Environment

The environmental data is a 3D point cloud collected by
sonar equipment in a pool. This point cloud presents a complex
underwater three-dimensional environment, which contains
87104 points. The range of the X-axis is (-15, 12), the range
of the Y-axis is (-3, 4), the range of the Z-axis is (-2, 4).
The comparison of three algorithms in the three-dimensional
environment is still obvious.

In Fig. 6, the purple point represents the starting point, the
green point represents the goal point. We set two different
groups of starting points and goal points to simulate two
different scenarios. Obviously, all three algorithms generated
a collision-free path connecting the starting point and the
goal point. As shown in Fig. 6, the path generated by RRT*
is the longest, followed by Q-RRT*. The path generated by
our algorithm is the shortest and the final path is smoother.
The result verifies the feasibility of the algorithm in three-
dimensional environment.

To avoid contingency, we run the experiments of three
algorithms independently 500 times in two scenarios. Table II
shows the comparison of the cost of the path of three al-
gorithms. The maximum, minimum and average values are
listed. For average value, compared with RRT* and Q-RRT*.

The path cost of S-RRT* is reduced by 12.7% and 6.05% in
scenario1, reduced by 27.48% and 12.49% in scenario2.

TABLE II
THE COMPARISON OF COST

Scenario Algorithm Max Min Avg

RRT* 27.72 22.40 24.55
Scenario1 Q-RRT* 25.12 21.66 22.81

S-RRT* 22.05 21.15 21.43
RRT* 10.90 13.32 14.59

Scenario2 Q-RRT* 13.98 10.52 12.09
S-RRT* 12.35 10.01 10.58

Similarly, Fig. 7 shows the convergence speed of the three
algorithms in scenario 1. It can be seen that the initial solution
quality of S-RRT* is the highest, followed by Q-RRT* and
RRT* is the worst. The result of S-RRT* algorithm has
little fluctuation and converges to the optimal solution in
1200 iterations, while the convergence speed of the other two
algorithms is slower, and the final result is not as good as S-
RRT*. The statistical data verify the advantage of S-RRT* in
convergence speed in three-dimensional environment.

C. Discussion

From these experiments, the result shows that our algorithm
performs better than RRT* and Q-RRT*. The advantages may
come from the following reasons.

• Based on trigonometric inequality, the path generated by
our algorithm will be significantly shorter and smoother.
These superiorities are more prominent in complex envi-
ronments

• Compared with RRT* and Q-RRT*, instead of the radius
parameter, we find the farthest ancestor node for Xnew,
which makes it obtain the initial solution faster and
converge faster.

• Creating intermediate nodes in steps between Xnew and
Xparent provides more choices for subsequent nodes to
find the farthest parent node. Therefore, the cost of path
will be further reduced.

357



(a) (b)

Fig. 6. Comparison of the quality of the initial solution in 3D environment. (a) scenario1. (b) scenario2.

Fig. 7. Comparison of the convergence speed in 3D environment

V. CONCLUSION

In this paper, an optimization algorithm called S-RRT*
is proposed. It performs well in the quality of initial solu-
tion and convergence speed. The algorithm proposed in this
paper inherits the advantages of RRT*, uses backtracking
to select the parent node to minimize the current cost, and
adds intermediate nodes to maintain the advantage of small
step size, to provide a better choice for subsequent new
nodes to select the parent. Experiments show that under the
same conditions, the final path obtained by this algorithm is
shorter and smoother than previous algorithms. In addition, we
achieved good results in experimental simulation, and verified
the path with ROV. Although, our work does not investigate
the situation in dynamic environments. In addition, kinematic
constraints are not considered in this paper, and we hope to
continue to explore them in future work.
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