
Covariance-Based Time-Frequency ESPRIT
Algorithm for Direction-of-Arrival Estimation

Seungnyun Kim, Jiao Wu, Ahnho Lee, Yiying Liu, Yongseok Byun, and Byonghyo Shim
Institute of New Media and Communications, Department of Electrical and Computer Engineering

Seoul National University, Korea
Email: {snkim, jiaowu, ahlee, liuyiying, ysbyun}@islab.snu.ac.kr, bshim@snu.ac.kr

Abstract—In this paper, a new version of time-frequency (T-
F) ESPRIT algorithm with reduced computational complexity
is proposed. The key idea of proposed covariance-based T-F
ESPRIT (CB T-F ESPRIT) algorithm is to use the covariance-
based DoA (CB-DoA) approach for the signal subspace con-
struction. Specifically, the proposed CB T-F ESPRIT algorithm
first constructs the time-frequency data model and then exploits
the STFD matrix for the estimation of signal subspace. In
particular, instead of directly performing EVD on the covariance
matrix obtained from the averaged STFD matrix, the proposed
scheme employs the CB-DoA approach which provides a lower
computational complexity while maintaining the performance
gain of T-F ESPRIT algorithm over the conventional ESPRIT
algorithm. From the computational complexity analysis and the
numerical evaluations, we demonstrate that CB T-F ESPRIT al-
gorithm outperforms the conventional DoA estimation schemes
with reduced computational complexity.

I. INTRODUCTION

Direction of arrival (DoA) estimation has received much
attention over the past few years [1]–[4]. Although the
global positioning system (GPS) provides fast and real-time
localization service, it might not available in the indoor
environment and cannot provide high accuracy. As a remedy,
various DoA estimation techniques have been proposed in
recent years [5]–[7]. One of the most popular and widely used
DoA estimation technique is multiple signal classification
(MUSIC) algorithm [5]. MUSIC algorithm is a type of
subspace method that decomposes the eigenspace of signal
covariance matrix into the signal subspace and the noise
subspace and then exploits the orthogonality between two
subspaces for the DoA estimation. While the MUSIC al-
gorithm can accurately estimate the direction of multiple
signals, it has a fundamental limitation that the resolution
of angle estimation is limited. To overcome this issue, an
estimation of signal parameters via rotational invariance
techniques (ESPRIT) algorithm has been proposed [6]. Also
in [7], time-frequency (T-F) ESPRIT algorithm using the
spatial time-frequency distribution (STFD) matrix has been
proposed. The T-F ESPRIT algorithm can improve the DoA
estimation accuracy over the conventional ESPRIT algorithm
but the computational complexity is burdensome due to the
eigenvalue decomposition (EVD).

In this paper, a new version of T-F ESPRIT algorithm
with reduced computational complexity is proposed. The key

This research was supported by the MSIT(Ministry of Science and
ICT), Korea, under the ITRC(Information Technology Research Center)
support program (IITP-2021-0-02048) supervised by the IITP(Institute of
Information & Communications Technology Planning & Evaluation)

idea of proposed covariance-based T-F ESPRIT (CB T-F
ESPRIT) algorithm is to use the covariance-based DoA (CB-
DoA) approach for the signal subspace construction [8], [9].
Specifically, the proposed CB T-F ESPRIT algorithm first
constructs the time-frequency data model and then exploits
the STFD matrix for the estimation of signal subspace. In par-
ticular, instead of directly performing EVD on the covariance
matrix obtained from the averaged STFD matrix, the pro-
posed scheme employs the CB-DoA approach which provides
a lower computational complexity while maintaining the
performance gain of T-F ESPRIT algorithm over the conven-
tional ESPRIT algorithm. From the computational complexity
analysis and the numerical evaluations, we demonstrate that
CB T-F ESPRIT algorithm outperforms the conventional DoA
estimation schemes with reduced computational complexity.

II. SYSTEM MODEL

We consider a multiple-input multiple-output (MIMO)
systems with P transmitting sources and 2M uniform lin-
ear array (ULA) of receiving antennas (M > P ) [10],
[11]. The receiving antennas are grouped in doublets with
displacement ∆ and the antennas in each doublet have a
constant displacement d (see Fig. 1). We focus on chirp
and analytic narrowband frequency modulation (FM) signal,
which is modulated as

s(t) = [s1(t) · · · sP (t)]T (1)

=
[
s1e

jψ1(t) · · · sP ejψP (t)
]T
, (2)

where sp and ψp(t) are the fixed amplitude and the time-
varying phase of the p-th source signal with the impinging
angle θp, respectively. We also assume that the transmit-
ted signals propagate in a stationary environment and are
mutually uncorrelated over the T observations. Under this
assumption, we get

E
[
si(t)s

∗
j (t)

]
= δi,j . (3)

Let xm(t) and ym(t) be the received signals of the m-th
antenna of the first and second antenna doublet at time t as

xm(t) =

P∑
p=1

sp(t)am(θp) + nx,m(t), (4)

ym(t) =

P∑
p=1

sp(t)e
−j

w∆sin θp
c am(θp) + ny,m(t), (5)

where am(θp) = e−j(m−1)
wd sin θp

c is the phase delay, w is
the central frequency, c is the propagation speed, and nx,m(t)
and ny,m(t) are the noise components.
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Fig. 1: ULA Array structure with 10 elements in each doublet.

Now let x(t) and y(t) be the received signal vectors of
each doublet at time t:

x(t) = As(t) + nx(t), (6)
y(t) = AΦs(t) + ny(t), (7)

where A = [a(θ1) · · ·a(θP )] is the array steering matrix
which has a(θp) = [a1(θp) · · · aM (θp)]

T as its p-th col-
umn vector, nx(t) = [nx,1(t) · · ·nx,M (t)], and ny(t) =
[ny,1 · · ·ny,M ]. The matrix Φ is a P × P diagonal matrix
whose diagonal elements are the phase delay between the
two doublets given by

Φ = diag{e−j
w∆sin θ1

c , · · · , e−j
w∆sin θP

c }. (8)

By grouping the doublet received signals into z(t) =


x(t)
y(t)


,

the transmission modeling becomes

z(t) = Ās(t) + n̄(t), (9)

where Ā =


A
AΦ


and n̄(t) =


nx(t)
ny(t)


. We assume that the

noise is spatially and temporally white zero mean process.
That is

E

n̄(t)n̄H(s)


= σ2I2Mδt,s, (10)

where σ2 is the noise variance.

III. SPATIAL TIME-FREQUENCY DISTRIBUTION

Conventional approaches use the signal covariance matrix
to compute the signal subspace only in the time domain.
In contrast, the time-frequency method deals with the time-
frequency distribution (TFD) of the specific temporal win-
dows for the specific frequencies which can fully exploit the
time-frequency characteristics of signals. The discrete Spatial
Pseudo-Wigner-Ville distribution (SPWVD) matrix is given
by

D̂zz(t, f) =

(L−1)/2
τ=−(L−1)/2

z(t+ τ)zH(t− τ)e−j4πfτ , (11)

where L is the odd window length. The data matrix formed
by the received signal vector is specifically shown as

Z(t) =


z


t− L− 1

2


· · · z


t+

L− 1

2


(12)

=




z1(t− L−1
2 ) · · · z1(t+

L−1
2 )

...
. . .

...
z2M (t− L−1

2 ) · · · z2M (t+ L−1
2 )


 . (13)

Note that the SPWVD matrix can be re-expressed as

D̂zz(t, f) = Z(t)F(f)ΠZH(t), (14)

where Π is an L× L exchange matrix and

F(f) = diag

ej4πf

L−1
2 , ej4πf

L−3
2 , · · · , e−j4πf L−1

2


. (15)

Taking the expectation and assuming that the source signal
and noise are statistically independent, we get

Dzz(t, f) = E

D̂zz(t, f)


(16)

= ĀDss(t, f)Ā
H + σ2I2M , (17)

where

Dss(t, f) = E

D̂ss(t, f)


, (18)

D̂ss(t, f) =

(L−1)/2
τ=−(L−1)/2

s(t+ τ)sH(t− τ)e−j4πfτ . (19)

The equation (18) clearly states that the STFD matrix
works as a covariance matrix in the ESPRIT algorithm. The
difference between STFD matrix and the covariance matrix
is that the covariance matrix is time-dependent where as the
STFD matrix is time and frequency-dependent.

IV. COVARIANCE-BASED T-F ESPRIT ALGORITHM

A. Utilization of Multiple t-f Points

In practice, the averaged STFD matrix obtained by av-
eraging the sample SPWVD matrices over multiple time-
frequency points are used instead of the true STFD matrix.
Through the EVD of the averaged STFD matrix, we can
obtain the signal subspace spanned by the columns of Ā
and then exploit the rotational invariance property of Ā to
estimate the signal DoAs. Let D̄zz be the STFD matrix
averaged over PK time-frequency points {tk, fp,k(tk)}p,k:

D̄zz =
1

PK

P
p=1

K
k=1

D̂zz(tk, fp,k(tk)) (20)

=
1

PK

P
p=1

K
k=1

ZkFp,kJZ
H
k , (21)

where the intermediate frequency law of the p-th signal at the
k-th time sample is fp,k(tk), and Zk = X(tk), and Fp,k =
F(fp,k(tk))).

B. Covariance-Based T-F ESPRIT Algorithm

Let J1 and J2 be selection matrices such that

J1 = [IM 0M ], (22)
J2 = [0M IM ]. (23)

Using these selection matrices, the array steering matrix can
be divided as 

J1Ā
J2Ā


=


A
AΦ


(24)

From the equation (24), the rotational invariance property is
obtained, i.e.

J2Ā = J1ĀΦ (25)

The rotational invariance property is the key idea for both
ESPRIT and CB-DoA algorithms in revealing Φ. Since the
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array steering matrix Ā is unknown, ESPRIT algorithm uses
the signal subspace matrix obtained from the eigenvalue
decomposition of the covariance matrix. Since the signal
subspace matrix has the same column space with Ā, it
inherits the rotational invariance property. On the other hand,
the CB-DoA algorithm eliminates the effect of noise and
transform A into an unitary matrix which is much easier
to handle. Hence, without knowing A, we can still use the
rotational invariance property in CB-DoA algorithm.

Considering the fact that the averaged STFD matrix in T-F
ESPRIT algorithm acts as the covariance matrix in ESPRIT
algorithm, it is natural to define D1 and D2 as

D1 = J1(D̄zz − σ2I2M )JH
1 , (26)

D2 = J2(D̄zz − σ2I2M )JH
1 , (27)

where σ2 is the estimate noise power. By performing the
EVD of D1 as

D1 = UΣ2UH, (28)

we may form the matrices Σ2
s and Us corresponding to

the P largest eigenvalues of D1 and their corresponding
eigenvectors, respectively, such that J1Ā satisfies

J1Ā = UsΣsV, (29)

where V is an unitary matrix. Thus, by defining transforma-
tion F as

F = Σ−1
s Us, (30)

A can be transformed into an unitary matrix V as

FJ1Ā = V. (31)

Now, let DF be the matrix obtained by multiplying F at
both sides of D2. Applying the equation (28) and using the
rotational invariance property of Ā, we obtain

DF = FD2F
H (32)

= FJ2ĀDssĀ
HJH

1 (33)

= FJ1ĀΦDssĀ
HJH

1 (34)

= VΦVH. (35)

Hence, from the discussion above, Φ can be found by
performing the EVD on DF . Since the elements of Φ have
unit norm, Φ is generated with the normalized eigenvalues
of DF and the DoAs are calculated from the diagonal
elements of Φ.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

The main goal of this paper is the computational com-
plexity reduction of the T-F ESPRIT algorithm through the
covariance based approach. For that purpose, we summarize
the basic operations of the proposed CB T-F ESPRIT algo-
rithm and the conventional T-F ESPRIT algorithm in Table I.
In the conventional T-F ESPRIT algorithm, Ψ is calculated
as the total least square (TLS) solution. For convenience,
the computational complexity of simple matrix addition and
diagonal matrix operations are ignored.

From Table 1, we can verifies that the T-F ESPRIT
algorithm requires:

T-F ESPRIT CB T-F ESPRIT
[Es, σ2] = EVD(Dzz) [Es, σ2] = EVD(J1DzzJH

1 )
Ex = J1Es F = Σ−1

s EH
s

Ey = J2Es D2 = J2(D̂zz − σ2)JH
1

Ea = [Ex Ey ]H[Ex Ey ] DF = FD2FH

E,Λ = EVD(Ea) Φ = EVD(DF )[
E11

E22

]
=

[
J1E
J2E

]

Ψ = −E12E
−1
22

Φ = EVD(Ψ)

TABLE I: Comparison of the proposed CB T-F ESPRIT
algorithm and the conventional T-F ESPRIT algorithm.
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Fig. 2: RMSE versus SNR (M = 10, T = 200, L = 32, 500
trails per simulated point.

• PK matrix multiplications of a 2M × L by a L× 2M
matrix

• 1 eigenvalue decomposition of a 2M × 2M matrix
• 1 matrix multiplication of a M × 2P by a M × 2P

matrix
• 1 eigenvalue decomposition of a 2P × 2P matrix
• 1 full-matrix inversion of a P × P matrix
• 1 matrix multiplication of a P × P by P × P matrix
• 1 eigenvalue decomposition of a P × P matrix
On the other hand, the proposed CB T-F ESPRIT algorithm

requires:
• PK matrix multiplications of a 2M × L by a L× 2M

matrix
• 1 eigenvalue decomposition of a M ×M matrix
• 3 matrix multiplication of a P ×P by a P ×M matrix
• 1 eigenvalue decomposition of a P × P matrix
Clearly, the computational cost of CB T-F ESPRIT

algorithm is much smaller than that of T-F ESPRIT
algorithm. In fact, CB T-F ESPRIT algorithm requires
a half size eigenvalue decomposition compare to T-F
ESPRIT algorithm which occupy most of the computational
complexity.

VI. SIMULATION RESULTS

We consider a ULA system with two doublet array includ-
ing 10 array sensors with the spacing between each array
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element is d = λ
2 and the spacing between two doublet array

is ∆ = 10d (see Fig. 1). Two narrowband chirp signals
impinge on the array from θ1 = 24◦ and θ2 = 25◦. The
source waveforms are modeled as

s1(t) = e2π(f1t+β1t
2/2) (36)

s2(t) = e2π(f2t+β2t
2/2) (37)

where f1 = 0 and f2 = 1
2 are the discrete-time frequencies

of the two source signals while their chirp rates are chosen as
β1 = 0.002 and β2 = −0.002. The noise model is complex
Gaussian zero-mean spatially and temporally white process.
The averaged STFD matrix D̄ is computed for each source
signal separately by averaging the sample STFD matrices
computed at 200 different time-frequency points that belong
to the source signatures through time-frequency processing
window with length L = 32. A total of 300 independent
Monte-Carlo simulation runs have been used to obtain each
simulated point. In order to compare the performance of the
proposed CB T-F ESPRIT, we use the T-F ESPRIT and
ESPRIT algorithms as benchmark schemes [6], [7]. As a
performance metric, we use root means square errors (RMSE)
defined as

RMSE =
1

I

I∑
i=1

√√√√
P∑

p=1

(θ̂p,i − θp,i)2 (38)

where I is the number of Monte-Carlo simulation, θ̂p,i and
θp,i are the p-th estimated DoA and the real DoA at i-th
Monte-Carlo simulation, respectively. A logarithmic form of
RMSE is 10 logRMSE.

In Fig. 2, we plot the RMSE as a function of signal-
to-noise-ratio (SNR). We observe that the proposed CB
T-F ESPRIT algorithm outperforms the conventional
ESPRIT algorithm. Even when compared with the T-F
ESPRIT algorithm, the proposed scheme achieves a similar
performance. In Fig. 3, we fix the SNR to 10 dB and
plot the RMSE as a function of the number of snapshots.
One can observe from Fig. 3 that the CB T-F ESPRIT
algorithm has almost the same performance with the T-F
ESPRIT algorithm and much better performance than the
conventional ESPRIT algorithm.

VII. CONCLUSION

In this paper, we proposed a novel DoA estimation
algorithm with reduced computational complexity. The
key idea of proposed CB T-F ESPRIT algorithm is
to use the CB-DoA approach for the signal subspace
construction. To be specific, instead of directly performing
EVD on the covariance matrix obtained from the averaged
STFD matrix, the proposed scheme employs the CB-DoA
approach which provides a lower computational complexity
while maintaining the performance gain of T-F ESPRIT
algorithm over the conventional ESPRIT algorithm. From
the computational complexity analysis and the numerical
evaluations, we demonstrate that CB T-F ESPRIT algorithm
outperforms the conventional DoA estimation schemes with
reduced computational complexity.
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Fig. 3: RMSE versus the number of snapshots (M = 10,
SNR = 10 dB, L = 32, 500 trails per simulated point.
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