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Abstract—Dynamically scheduling the bandwidth based on
the traffic variation is important for a task offloading system.
However, it faces two challenges. On one hand, the time-varying
nature of the offloading traffic makes it difficult to be predicted
accurately. On the other hand, differentiated mechanisms are ap-
plied to different offloading task types, which greatly complicates
the behavior of the task offloading system. It is hence difficult
to estimate the performance metrics accurately, especially when
the metric values are extremely small. To tackle this, we present
a double-machine-learning-based resource scheduling (DML-RS)
method for task offloading traffic in this paper. The features of
DML-RS are as follows: i) the wavelet transform and the sliding
time window are incorporated with the LSTM traffic prediction
model, which can capture the periodic and volatile natures of
the offloading traffic and hence improve the prediction accuracy;
ii) the logarithmic converting is applied to the ANN estimation
models, which can improve the sensitivity of the ANN models to
the small values and hence provides higher estimation accuracy.
As a result, DML-RS can predict the traffic demand of the next
network reconfiguration time point and optimize the resource
allocation based on the performance estimations in advance.
Results show that DML-RS offers near-optimal results compared
with the existing method.

Index Terms—Optical networks, traffic prediction, perfor-
mance estimation, network optimization, artificial neural net-
work, multi-access edge computing.

I. INTRODUCTION

Over the last few years, Multi-Access Edge Computing
(MEC) has empowered the network edge. MEC servers are
deployed in close proximity to user equipment (UE) in order to
improve the quality of service (QoS) and enhance the quality
of experience (QoE) [1]. However, MEC servers often face
overload issues, since they are constrained in computing power
and storage capacity [2]. As a result, task offloading between
geo-distributed MEC servers is necessary, which has created
the need for data transfers from one MEC server to another.
However, the explosive growth of offloading traffic, fueled
by emerging MEC applications like Tactile Internet, smart
cities and hologram, imposes a great challenge on the network
infrastructure of the task offloading system [3].

As an emerging optical transmission technology, elastic
optical network (EON) is advantageous for the low-latency,
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small-overhead and high-bandwidth features of optical con-
nections. The modulation format and data rate of an EON
connection can be adapted according to the heterogeneous
requirements of offloading transfers. It is hence desirable to
carry the offloading traffic. However, EON needs to estab-
lish an end-to-end lightpath before sending the data, which
may take hundreds of milliseconds [4]. To minimize such
establishment overhead, a portion of the link capacity has
to be pre-reserved for offloading traffic. This may lead to
the bandwidth contention between the offloading traffic and
background traffic, especially at peak hours. On the other
hand, MEC operators often purchase link bandwidth from
ISP providers based on peak demand. To accommodate the
growing peak demand, MEC operators have to constantly
purchase link bandwidth even if the average utilization is low
[5]. The increasing offloading transfers not only provoke the
bandwidth contention, but also incur expensive transfer cost.
Consequently, the efficient use of the bandwidth resources is
technically and economically important for MEC operators.

Prior studies proposed novel allocation schemes, flexible
scheduling methods and efficient provisioning policies to
maximize the utilization, minimize the cost and guarantee the
delay constraint [1]–[6]. In essence, the prior studies focused
on a certain type of fixed load or a set of given transfer requests
and formulated their resource allocation problems as static
optimization problems. In practice, the offloading traffic varies
dynamically throughout the day [7]. For example, the traffic
in an enterprise network often peaks at the work-hours, but
falls quickly in the evening. While the prior studies have been
proven to be effective for the static traffic, they find it difficult
to handle the dynamic traffic. A static allocation scheme may
either waste a large amount of bandwidth resources when the
traffic is low, or be vulnerable to degraded QoS when the
traffic is high. Thus, it is necessary to dynamically schedule
the resources with the traffic variation.

Intuitively, the efficiency of dynamic resource scheduling
depends on two key factors: (a) how to predict the traffic vari-
ation accurately; (b) how to estimate the network performance
based on the traffic and resource allocation accurately. Our
observations on the key factors are threefold as follows.

First, as previously mentioned, the traffic is periodic at the
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day granularity. However, at a finer time granularity, the traffic
is highly volatile due to the stochastic behavior of the end
users. The existing methods are capable of providing traffic
prediction information at a relatively coarse level. While the
coarse-grained prediction is sufficient enough for a long-term
network planning, most methods find it difficult to provide
highly accurate predictions for dynamic scheduling at a finer
time granularity [8]. The periodic and volatile natures of the
offloading traffic impose a challenge on the existing traffic
prediction methods.

Second, the offloading traffic is often a mix of multiple types
with different characteristics and requirements. Differentiated
mechanisms hence are applied to different traffic types. For
instance, preemption and resource partitioning mechanisms
were used to handle a mix of elephant and mice traffic [6]. In
[7], preemption, resource partitioning and temporary storage
mechanisms were used to handle a mix of delay-tolerant
(DT) and delay-sensitive (DS) traffic. Unfortunately, the co-
existence of multiple mechanisms complicates the behavior
of the task offloading system. It is challenging to estimate
how the performance metrics change with the traffic and
resource allocation efficiently. In other words, the conventional
estimation methods may be either time-consuming (like the
discrete event simulation) or not accurate enough (like the
Erlang fixed point approximation).

Third, MEC applications often have the stringent perfor-
mance requirements, which suggests the value of the network
performance metric could be extremely small in certain cases,
such as 10−5 blocking probability in [9]. Such small values
can lead to a vanishing gradient issue as well as unacceptable
estimation error when using the conventional estimation meth-
ods. As a result, the conventional estimation methods have
difficulty in achieving high accuracy.

In this work, we consider the task offloading system inter-
connected by the EON link [7], and explore how to dynam-
ically schedule the resources in advance based on the traffic
prediction. Our contributions are summarized as follows:

1) We present a long short-term memory (LSTM) model,
which is enhanced by the sliding time window and
the wavelet analysis to learn the fluctuation, periodic
and volatile characteristics from the historical traffic
data. Experiments show that the LSTM model is more
accurate than the conventional prediction model.

2) We present artificial neural network (ANN) models to
learn the impacts of the traffic and resource allocation on
the network performance metrics. To overcome the van-
ishing gradient issue, the logarithmic functions are used
to convert the values of the metrics into the logarithmic
forms. The ANN models hence are more sensitive to
the extremely small values than the conventional models
learning from the original values. Experiments show
that the ANN models have higher estimation accuracy
and shorter training time than the conventional models
especially when the metrics vary from 10−10 to 10−5.

3) We present a double-machine-learning-based resource
scheduling method (DML-RS), whose main ideas are
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Fig. 1: The illustration of the network infrastructure.

threefold as follows. i) DML-RS uses the LSTM model
to predict the traffic demand at the next network re-
configuration time. ii) DML-RS formulates the resource
scheduling problem for the next reconfiguration time
as an optimization model, which aims to minimize
the performance metrics while improving the band-
width utilization. iii) To find the optimal result, DML-
RS searches feasible resource allocations and estimates
their corresponding performance using the ANN models.
Simulations show that DML-RS can meet the constraints
while improving the utilization efficiently, compared
with the existing methods.

The rest of this paper is organized as follows: Sect. II
describes the system model. Sect. III and Sect. IV illustrate
the LSTM model and the ANN models, respectively. Sect. V
presents DML-RS, which is followed by the evaluation in Sect.
VI. Finally, Sect. VII concludes this paper.

II. SYSTEM MODEL

A. Network Architecture

The task offloading system over the point-to-point (P2P)
EON link [7] is considered. The network infrastructure is
depicted in Fig. 1. The SDN controller centrally schedules
and orchestrates the bandwidth resources in the EON and
the storage resources in MEC servers. MEC servers can be
deployed in the field, remote node (RN) and central office
(CO) [10]. Our work can be applied to two P2P offloading
scenarios. In the first scenario, an MEC server in the field is
connected to the client networks and an MEC server in the
nearest CO via the additional installed fiber links. The field
server is in close proximity to the client networks and can
offload its tasks to the CO server when it is overloaded. In the
second scenario, an MEC server in the RN can communicate
with the client networks via the existing fiber links between
the client networks and the RN. Similarly, the RN server can
offload its tasks to the CO server. The former offers lower
transmission latency, whereas the latter is more economical.

B. Overview

As in [7], the offloading tasks are categorized into DS tasks
(e.g., Tactile Internet) and DT tasks (e.g., edge caching). To
meet the low-delay requirement, DS traffic is given preemptive
priority over DT traffic. To reduce peak demand, the delay
tolerance of DT traffic is exploited. The storage of MEC
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server is used to temporarily store DT traffic when the link is
busy. To balance the bandwidth contention between DS and
DT traffic and the bandwidth utilization, the link spectrum
resources are partitioned into two exclusive zones and a shared
zone. The exclusive zones are dedicated for DS and DT traffic,
respectively. The shared zone can be used by both traffic types.
In this work, we aim to dynamically adapt the bandwidth and
storage resources reserved for the offloading traffic as well as
the resource partitioning between DS and DT traffic based on
the predicted traffic demands and the estimated performance.

The total spectrum resources are divided into frequency slots
(FSs). The capacity of each FS (B) is 12.5 GHz. Let n denote
the number of FSs assigned to each task. Let m denote the
modulation level assigned to each task, where {m|m ∈ M}
and M = {1, 2, 3}. M represents the three modulation formats:
BPSK, QPSK and 8QAM, respectively. The modulation level
should be selected based on the transmission distance of a
lightpath. Specifically, BPSK, QPSK and 8QAM support 240
km, 120 km and 60 km, respectively. Let H denote the
physical distance between the MEC servers.

Tasks randomly arrive at a field/RN server and are offloaded
to the CO server with a Poisson process and λ tasks per unit
time. Task file is exponentially distributed with a service rate
μ tasks per unit time, where μ = (n · B · m)/F . Let the
percentage of DS traffic on all the offloading traffic be δ. The
arrival rate for DS tasks is equal to λ·δ. The arrival rate for DT
tasks is equal to λ·(1−δ). The amounts of spectrum resources
assigned to DS and DT tasks are cds and cdt, respectively. The
amount of spectrum resources shared by both task types is cs.
The amount of storage assigned to DT tasks is s Gb.

Upon a DS task arrival, it will be admitted when either cds
or cs has the required resources. It will preempt an active DT
task in cs when neither cds nor cs has the required resources.
It will be blocked when the spectrum resources in cds and cs
are insufficient and all the active tasks in cs are DS.

Upon a DT task arrival, it will be admitted when either cdt
or cs has the required resources. It will be stored when neither
cdt nor cs has the required resources, but s is sufficient. It will
be blocked when the resources in cds, cs and s are insufficient.

Bds and Bdt are defined as the blocking probability of
DS and DT tasks, respectively. Pdt is defined as the preemp-
tion probability of DT tasks. U is defined as the spectrum
utilization. Thus, how to decide cs, cds, cdt and s (i.e., the
resource scheduling problem) is critical for the performance
of the offloading system.

III. LSTM-BASED TRAFFIC PREDICTION

As the EON network will be reconfigured periodically, we
present an LSTM model to predict the task arrival rate at each
reconfiguration time point. To enhance the LSTM model, our
main ideas are twofold: i) the sliding time window (Win) is
used to capture the fluctuation characteristic from the historical
traffic data; ii) the wavelet analysis (Wavelet) is used to extract
the periodic and volatile characteristics from the traffic data.

We first illustrate how to generate the training samples. The
Internet traffic dataset collected in [11] is used to emulate

TABLE I: Traffic Prediction Performance

MAE MAPE (%) MSE

ARIMA 7.2·10−2 2.8 1.1·10−2

LSTM (only Win) 6.9·10−2 2.7 9.1·10−3

LSTM (only Wavelet) 5.8·10−2 2.2 6.5·10−3

LSTM (Wavelet+Win) 3.2·10−2 1.2 2.0·10−3

the fluctuation of λ over time. We use consecutive traffic
data points to form a Win. Besides, we use the wavelet
transform to decompose each data point into an approximation
component that captures the periodic characteristic and the
detail components that capture the volatile characteristics. Let
λt denote the task arrival rate at the reconfiguration time
point t. Consider λt as the output label of a training sample.
Let λt−5, ..., λt−1 form a five-entry Win. We use Symlets
wavelet function and Mallat algorithm to perform a three-
level decomposition on λt−1, which returns the approximation
component c3t−1 and the three detail components d1t−1, d2t−1,
d3t−1. Finally, the Win from t−5 to t−1, the one approximation
and three detail components of λt−1 form the nine-entry input
vector of the training sample.

Our LSTM model consists of a nine-neuron input layer, a
hidden layer with sixty-four neurons, and a one-neuron output
layer. The MSE function is used as the loss function. The
activation functions for the hidden layer are the sigmoid and
tanh functions by default. The linear activation function is used
for the output layer. Besides, Adam optimizer with default
parameters is used in training. 80% of the dataset is used as
the training set and the remaining 20% is used as the test
set. During the training process, 15% of the training samples
are used as the validation set to avoid over-fitting. An early
stopping criterion is used to achieve faster convergence and
termination. The training will be stopped when the validation
loss cannot keep decreasing over 100 epochs.

To test the prediction performance, the mean absolute error
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Fig. 2: The traffic predictions using different models.
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(MAE), the mean absolute percentage error (MAPE) and the
MSE functions are used. The autoregressive integrated moving
average (ARIMA) model, the LSTM model using only the
wavelet analysis and the LSTM model using only the Win are
compared with our LSTM model. In Table I, our LSTM model
obtains better performance than the three models in terms of
the MAE, MAPE and MSE. Fig. 2 compares the predictions
to the real traffic. The prediction results using the other three
models may lag behind the real traffic when the real traffic
is bursty. On the contrary, our LSTM model is more accurate
than the others, especially when the real traffic is bursty.

IV. ANN-BASED PERFORMANCE ESTIMATION

As mentioned in Sect. II-B, the four metrics, i.e., Bds, Bdt,
Pdt and U , can be used to evaluate the performance of the
offloading system. Due to the complicated nature of the system
behavior, we use the ANN models to estimate the metrics
instead of deriving close-form approximations.

Since the values of the metrics are in the range of 0 to
1, the ANN models with the sigmoid activation functions
are sufficient enough to estimate the metrics. However, the
stringent performance requirements imposed by MEC appli-
cations result in the extremely small values of the performance
metrics. In this case, the conventional ANN models may
face the vanishing gradient issue and suffer from significant
estimation error. To tackle this issue, our idea is to convert
the original values of the metrics into their logarithmic forms
before the training. As a result, the ANN models can be more
sensitive to such extremely small values.

To generate the training samples, we run extensive simula-
tions to collect the corresponding performance metrics under
certain traffic and resource allocation conditions. Specifically,
λ, δ, μ, cs, cds, cdt and s form the seven-entry input vector of
a training sample. Besides, lg(Bds), lg(Bdt), lg(Pdt) and U are
the output labels of the training sample. Note that Bds, Bdt

and Pdt will be converted into the logarithmic forms (the base
10 logarithm function, i.e., lg(·) ) before the training, while U
remains its original form in training. This is because the values
of U are larger than 10−1 in typical network scenarios. In this
case, the conventional ANN model can estimate U accurately.

Three ANN models are used to estimate lg(Bds), lg(Bdt)
and lg(Pdt), respectively. Each model consists of a seven-
neuron input layer, one hidden layer with 1500 neurons, and

TABLE II: Comparisons of Estimation Performance

MAE MAPE (%) MSE ttrain (s)

Orig-ANN

Bds 1.5·10−3 2.2·103 1.6·10−5 3430
Bdt 3.0·10−3 5.6·103 3.7·10−5 5801
Pdt 8.0·10−4 3.4·103 2.8·10−6 5627
U 1.6·10−3 0.6 5.6·10−6 2647

Log-ANN

Bds 1.9·10−3 4.7 3.0·10−4 1797
Bdt 9.7·10−3 12.6 2.1·10−3 3656
Pdt 9.1·10−4 4.0 8.9·10−6 3633
U a – – – –

a As Orig-ANN is sufficient to estimate U , using Log-ANN is unnecessary.
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Fig. 3: Comparison among the simulation results, the Log-
ANN estimations and the Orig-ANN estimations.

a one-neuron output layer. The MSE function is used as the
loss function and the rectified linear unit (ReLU) activation
function is used for the hidden layer. The ReLU activation
function is used for the output layer. Note that the output of
each model will be re-converted into the original forms to
obtain the actual estimations of Bds, Bdt and Pdt. Let Log-
ANN denote the ANN model with the logarithmic converting.

An ANN model is used to estimate U , which consists of a
seven-neuron input layer, one hidden layer with 1500 neurons,
and a one-neuron output layer. The MSE function is used as
the loss function and the sigmoid activation function is used
for both the hidden layer and the output layer. Let Orig-ANN
denote the ANN model without the logarithmic converting.

In the training of both models, Adam optimizer with default
parameters is used. 80% of the dataset is used as the training
set and the remaining 20% is used as the test set. During the
training process, 20% of the training samples are used as the
validation set to avoid over-fitting. The early stopping criterion
similar to Sect. III is used for both models.

Although MAE, MSE and MAPE are used to evaluate the
estimation performance, neither MAE nor MSE is suitable
for the evaluations, because their small values do not suggest
a good estimation for the small values of the performance
metrics. Compared with MAE and MSE, MAPE is a better
measurement for the estimation error for the extremely small
values. Orig-ANN is considered as a baseline model. Table II
compares Log-ANN with Orig-ANN regarding the estimation
performance. The results show that Log-ANN has lower
MAPE than Orig-ANN. With the logarithmic converting, Log-
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Fig. 4: Illustration of DML-RS for the task offloading system.

ANN can overcome the vanishing gradient issue and hence
obtain faster convergence. On the other hand, with the loga-
rithmic converting, a simpler ReLU function can be used as
the activation function instead of the sigmoid function. Thus,
Log-ANN needs less training time (ttrain) than Orig-ANN.
Fig. 3 shows the comparisons among the simulation results, the
Log-ANN estimations and the Orig-ANN estimations in terms
of Bds, Bdt and Pdt. The Log-ANN models can obtain the
estimation results similar to the simulation results. Compared
with the Orig-ANN models, the Log-ANN models have higher
accuracy on the estimations.

V. RESOURCE SCHEDULING METHOD

Our idea is to schedule the resources in advance based
on the predicted traffic variation in order to improve the
performance while saving the spectrum resources. Here, we
formulate the resource scheduling problem at the next t as
an optimization model and present DML-RS to solve it. The
overview of DML-RS is illustrated in Fig. 4.

A. Problem Formulation

Given:
• BMax

ds , BMax
dt , PMax

dt : the upper bounds for Bds, Bdt and
Pdt respectively based on the SLA made with the clients;

• BMin
ds , BMin

dt , PMin
dt : the lower bounds for Bds, Bdt and

Pdt respectively based on the SLA made with the clients;
• UMin: the minimum U expected by the MEC operator;
• S: the amount of storage capacity on an MEC server;
• C: the amount of spectrum resources on an EON link;
Variables:
• cds, cdt, cs: integer variables, denote the amount of

spectrum resources assigned to the exclusive zone for
either DS or DT tasks, and the shared zone;

• s: integer variable, denotes the amount of storage re-
sources assigned to DT tasks;

Objective:

max α · lg(Bds) + β · lg(Bdt) + γ · U (1)

Our goals are twofold: i) minimizing Bds and Bdt within
the SLA-requested boundaries; ii) maximizing the bandwidth
utilization. The objective function is formulated to achieve
both the goals, as shown in Eq. (1). Let α, β and γ denote
the weight factors to adjust the importance of the three terms.
They can be specified by the MEC operators. Note that Bds,
Bdt, Pdt and U are functions of λ, δ, μ, cs, cds, cdt and s.

Algorithm 1 DML-RS Method

1: Input: the next network reconfiguration time point t, the
physical distance between the MEC servers H

2: Output: the allocation decision for t
3: Initialize: obj ← 0, CdsSet ← ∅ and MaxObj ← ∅
4: Use the LSTM model to predict λt

5: Decide m and μ based on H
6: Given the predicted λt, search all the feasible amounts of

spectrum resources (i.e., C �) that ensure Bds satisfies Eq.
(2) by using the Log-ANN-based Bds estimation

7: Enumerate all possible combinations of {cds, cs} that
satisfy C �=cds+cs, and store them in CdsSet

8: for all {cds, cs} ∈ CdsSet do
9: for all possible combinations of {cdt, s} that satisfy

Eq. (6) and Eq. (7) do
10: Find Bdt, Pdt and U that satisfy Eq. (3), Eq. (4)

and Eq. (5) respectively by using the Log-ANN-based Bdt,
Pdt and Orig-ANN-based U estimations

11: Calculate Eq. (1) and obtain the resulting obj�

based on the current {cds, cs, cdt, s}
12: if obj� <= obj then
13: Continue
14: else
15: obj ← obj� and MaxObj ← {cds, cs, cdt, s}
16: end if
17: end for
18: end for
19: return the optimal allocation decision {cds, cs, cdt, s}

Constraints:
1) Performance constraints. Eq. (2), Eq. (3) and Eq. (4)

ensure Bds, Bdt and Pdt are within the upper and lower
bounds. Eq. (5) ensures the U is beyond its lower bound.

BMin
ds ≤ Bds ≤ BMax

ds (2)

BMin
dt ≤ Bdt ≤ BMax

dt (3)

PMin
dt ≤ Pdt ≤ PMax

dt (4)

UMin ≤ U (5)

2) Resource allocation. Eq. (6) ensures the sum of spectrum
resources pre-reserved for the offloading tasks cannot
be more than C. Eq. (7) ensures the amount of storage
assigned to DT tasks cannot be more than S.

cds + cs + cdt ≤ C (6)

0 ≤ s ≤ S (7)

B. Algorithm

Here, we present DML-RS. On one hand, DML-RS uses
the LSTM model to predict λt at the next time point t. On the
other hand, DML-RS uses the ANN models to estimate the
metrics, given λt and a certain resource allocation. Finally,
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TABLE III: Simulation Parameters

Parameter Value Parameter Value Parameter Value

C 500 GHz S 50 Gb F 10 Gb
H 30 km BMin

ds 10−7 BMax
ds 10−5

BMin
dt 10−7 BMax

dt 10−5 PMin
dt 10−4

PMax
dt 10−3 UMin 0.2 δ 0.2
α -1 β -1 γ 50

DML-RS dynamically adjusts the resource allocation to op-
timize Eq. (1). Benefiting from the prediction, DML-RS can
be initialized in advance before t. Thus, DML-RS is able to
make timely decisions on scheduling.

Algorithm 1 presents the overall procedure of DML-RS.
Line 4 uses the LSTM model to predict λt. Line 5 decides the
modulation level m and μ based on the transmission distance
between the MEC servers. Line 6 searches all the feasible
amounts of spectrum resources (i.e., C ′) that ensure Bds

satisfies Eq. (2) by using the Log-ANN-based Bds estimation,
given λt. Line 7 enumerates all possible combinations of
{cds, cs} that satisfy C ′=cds+cs, and stores them in CdsSet.
Line 10 finds a combination of {cds, cs, cdt, s} that satisfies
Eq. (3), Eq. (4) and Eq. (5) using the Log-ANN-based Bdt,
Pdt and Orig-ANN-based U estimations. Line 11 calculates
Eq. (1) and obtains obj′ based on the current combination,
where obj′=Eq. (1). Lines 12-16 record obj′ if obj′ is larger
than the previous obj. Line 19 returns the optimal allocation
decision that maximizes Eq. (1).

VI. RESULTS AND DISCUSSIONS

Simulation setup is listed in Table III. We compare DML-
RS with two scheduling methods as follows. i) The optimal
method has a prior knowledge of traffic variations and esti-
mates the metrics based on extensive simulations. It searches
an optimal decision in a greedy manner. ii) The ARIMA-
OANN method uses the ARIMA traffic prediction and the
Orig-ANN models to estimate all the metrics. It also greedily
searches an optimal decision. The methods make the allocation
decisions based on the predicted traffic demands. Based on the
decisions, we run simulations to obtain the actual metrics.

Figs. 5 show the comparisons of the metrics among the
three methods. Since DML-RS offers more accurate prediction
and estimation than ARIMA-OANN, all the metrics in DML-
RS meet the constraints and are close to the optimal method.
However, in ARIMA-OANN, the performance upper or lower
bounds are violated at multiple time points. This is because the
ARIMA prediction is less accurate than our LSTM prediction
and the Orig-ANN suffers from an over-estimation issue when
the values of the metrics are extremely small. Besides, Fig.
5(d) compares the three methods with a static method. In this
static method, the allocation decision is made based on the
peak demand and remains unchanged over time. Compared
with the static method, the dynamic scheduling methods can
improve U significantly.
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Fig. 5: Comparison among the resource scheduling methods.

VII. CONCLUSIONS

In this paper, DML-RS is presented for data transfers in
the task offloading system, which provides highly accurate
traffic prediction and performance estimation. Simulations
demonstrate that DML-RS achieves the results similar to the
optimal method and outperforms ARIMA-OANN.
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