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Abstract—Traditional "2nd Wave (2WAI)" AI algorithms 
are highly specialized in narrowly-defined tasks in the 
transportation and mobility domain, however, quite hardly 
explainable and unable to cover the needs of unbiased and 
trusted decision-making in the CCAM domain. There is a strong 
need to accelerate the shift towards human-like "3rd Wave AI 
(3WAI)" to overcome the challenges of road transport to make 
autonomous vehicles and driving safe, cleaner and more 
efficient. This paper aims to shed light on ambitious pathways 
toward more trustworthy and explainable AI by presenting a 
strategic approach envisioning the requirements of 5 main 
audience profiles in the CCAM context (developers, decision-
makers, regulators, end-users, and CCAM Service providers). 
The presented approach envisages a 6-dimensional concept that 
brings features of i) Transparent and explainable; ii) Fair and 
impartial; iii) Responsible and accountable; iv) Robust and 
Reliable; v) Respectful of Privacy; vi) Safe and Secure, 
transportation.  To achieve the transition towards 3WAI a 
model-based n-sprint V methodology is introduced that is 
enriched with continuous validation by putting ethics at the 
centre of all potential innovations. The paper presents a review 
of the recently funded European projects within the concept of 
AI-powered CCAM. 
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I. INTRODUCTION AND CURRENT STATE-OF-PLAY 
Cooperative, connected and automated mobility (CCAM) 

is one of the next big trends in the automotive industry [1] that 
positions Artificial Intelligence (AI) in the centre for more 
trustworthy, safer, greener, secure, privacy-preserving, 
accountable, efficient and adopted mobility practices in both 
passenger and goods transportation. This paper aims to revisit 
Europe’s CCAM strategy and highlights the new third-way AI 
trend (3WAI) toward next-generation transportation and 
mobility systems. 

European Commission (EC) has adopted ambitious road 
safety targets. In continuation with the previous roadmaps for 
2010 and 2020, the EC has set a new 50% reduction target for 
the number of fatalities and serious injuries on European roads 
by 2030, as a milestone on the way toward the so-called 
'Vision Zero' [2].  

That is because one thing did not change since then: 
People. Still, in 90% of all accidents, the driver is a 
contributing cause [3]. Therefore, there is a real need to 
develop new technology that will improve future transport 
systems' safety while reducing their adverse impacts on the 
environment. In this context, vehicle automation plays a 
significant role to fulfil these objectives. Consequently, the 

EC has started working to deliver all elements of its 2019 
Road Safety Policy Framework by promoting safe systems 
and implementing its Sustainable and Smart Mobility Strategy 
[4]. 

One of the main expected milestones of this strategy is that 
"automated mobility will be deployed at a large scale by 
2030"[5]. In this context, due to the rapid advancement of AI, 
connectivity, and self-driving technology, the automotive 
industry has faced an onslaught of technological and 
regulatory changes. Mainly, AI has a huge potential to 
advance the perception, situational awareness, and decision-
making processes of autonomous vehicles (AV). However, as 
AI becomes more advanced than ever, humans are challenged 
to fully understand and retrace how the algorithm comes to a 
decision. These aspects have raised some mistrust towards AI 
and machine learning (ML) algorithms, causing the already 
existing distrust of autonomous driving (AD) technology to 
grow (i.e.~75% of US drivers fear AD technology [6]). That 
becomes a major concern mainly in the automotive sector 
since AVs have to go through a more rigorous certification 
process than conventional vehicles to enhance the adoption 
and acceptance of 3WAI. Therefore, it is crucial to prioritise 
‘Trust’ in AI/ML-powered technologies that are being 
implemented in automated/self-driving vehicles [7]. 

The expected milestones and the emerging needs of 
CCAM stakeholders have triggered new discussions on 
leveraging up the recent AI knowledge, say SecondWave AI 
(2WAI), towards the 3WAI by making AI-based solutions 
more trustworthy and explainable. For this purpose, this paper 
first presents the CCAM vision in line with the 3WAI and 
illustrates a strategic overview of ambitious pathways in 
Section III. Section IV describes a novel verification and 
validation methodology, called V-Cycle, that can be adapted 
to make AI-based CCAM systems more trustworthy. Section 
V concludes the paper. 

II. CCAM VISION, IEEE CAS AND 3WAI CONCEPT 
The CCAM Collaboration is a public-private partnership that 
brings together the research and development efforts of all 
stakeholders to expedite the adoption of breakthrough CCAM 
technologies and services throughout Europe. It intends to 
maximize the systemic benefits of CCAM-enabled 
innovative mobility solutions: greater safety, decreased 
environmental impact, and inclusivity. By bringing together 
the complex cross-sectoral value chain players with a similar 
vision, the CCAM vision will establish and implement a 
unified, coherent, and long-term R&I strategy: “European 
leadership in safe and sustainable road transport through 
automation”. CCAM vision is composed of seven clusters (i. 
Large-scale demonstrations, ii. Vehicle Technologies, iii. 
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Validation, iv. Integrating the vehicle in the transport system, 
v. Key enabling technologies, vi. Societal aspects and user 
needs, vii. Coordination) [1]. 

IEEE Circuits and Systems (CAS) vision is aligned with 
the CCAM Vision as new paradigms governing the 
computation connectivity in the fields of human-centric 
technologies, mobility and smart cities are mentioned in the 
technical strategic areas of the CAS society in the 2020-2024 
strategic plan [8]. AI has a special role in cutting-edge CAS 
research as AI has been implemented either at the integrated 
circuit (IC) level, GPU and high-level algorithmic level. CAS 
and AI meet in the CCAM domain, especially at the vehicle 
level and connected and autonomous system components. The 
CAS vision still seeks novel solutions for AI computing, 
neuromorphic computing, accelerators, deep ML techniques 
and recently trustworthy and explainable AI for AD, AVs and 
multimodal transportation and mobility solutions in the 
CCAM area. 

The 3WAI as described by DARPA is a new paradigm 
making AI contextually adapt to changing situations [9]. 
Aligned with the CCAM strategy there is an increasing need 
to leverage 2WAI to 3WAI which aims to make algorithms 
more like a human assistant than just a tool that is trained on 
a human-curated dataset to solve a specific problem. Note that 
the 3WAI is still an open research area, especially in the 
CCAM domain as there exist scientific and technical 
challenges as well as societal challenges. 

As illustrated in Fig 1., the proposed 3WAI concept is 
based on a 6-dimensional approach that is adopted for 
Trustworthy and explainable AI: 1. Transparent and 
explainable: Help participants understand how their data can 
be used and how AI systems make decisions. 2. Fair and 
impartial: Assess whether AI systems include internal and 
external checks to help enable equitable application across all 
participants. 3. Responsible and accountable: Put an 
organizational structure and policies in place that can help 
determine who is responsible for the output of AI system 
decisions. 4. Robust and Reliable: Confirm that AI systems 
can learn from humans and other systems and produce 
consistent and reliable outputs. 5. Respectful of Privacy: 
Respect data privacy and avoid using AI to leverage customer 
data beyond its intended and stated use. Allow customers to 
opt-in and -out of sharing their data. 6.Safe and Secure:  
Protect AI systems from potential risks (including cyber risks) 
that may cause physical and digital harm. The solutions to 
these 6 dimensions should be implemented by considering the 
following four common facilitators: Situational Awareness, 
Comprehensive multimodal Data Governance, Agile 
Verification & Validation Process, and Technical and 
Perceived Trust. 

The proposed 3WAI concept is capable of developing 
an open-trustworthy conceptual framework, set of innovative 
methods and human-centric toolsets by enhancing 
explainability and interpretability for easing the verification 
and validation (competence check) process of human-
like 3WAI algorithms (minimalism and pursuit of excellence) 
in the CCAM setting. This can be achieved by putting ethics 
at the centre (character) of all innovations to articulate two 
main cognitive engineering constructs: trust (competence, 
character) across the 5 targeted audience profiles (I. Data 
scientists, II. Decision-makers, III. Regulators, IV. End-users, 
V. CCAM Service providers) and situational awareness in 
AVs. The AI tools should take trust into account from two 
angles: 

Trust to a Person=, fC, C;  represents 
‘Competency’ and  represents ‘Character’; (1) 

Trust to an AI-based AD function=, ;  and  
represent ‘Certification’ and ‘Intent and Integrity’ (2) 

 
Fig. 1. The proposed 3WAI concept for CCAM 

III. AMBITIOUS PATHWAYS 
These two angles should be considered as the basis of 

applications utilising trustworthy and explainable AI. In line 
with this strategy, the following ambitious pathways are worth 
getting more focused on improving the current literature.  
A. Trust in Automated Vehicles (AV) and Driving (AD)  
Perceptions and feelings of future AV users are crucial to 
increasing the acceptance of the technology. Particularly 
perceptions of trust, safety, stress and control, are found to be 
important factors that affect the extent to which users accept 
AVs. Past literature has identified Trust as a fundamental 
factor for seamless human-automation interaction. However, 
there is a tendency for low Trust in AD technology. 
Furthermore, analyses have shown the link between the 
GDPR and trustworthy AI systems, including the fairness 
data protection principle, the regulation of automated 
decision-making and the assessment and mitigation of any 
risk of data processing systems to fundamental rights and 
freedoms of individuals. Although how trustworthy AI is 
considered by the public is of importance, the knowledge 
around the public opinion regarding the use and concerns of 
AI, especially within the CCAM concept, is still restricted 
and scattered. The recently proposed EU AI Act (COM(2021) 
206) [10] introduces more effective legal requirements to 
prevent or mitigate biases in high-risk AI, through a data 
management plan, human oversight, risk assessment, 
transparency measures and regulatory sandboxes. However, 
these proposals are still highly debated, and their practical 
implementation is still uncertain given the uncertainty, trust 
and bias around AI in the CCAM domain. This has raised 
some mistrust towards AI/ML algorithms, causing the 
already existing distrust of AD technology to grow. Hence, 
Trust has become central to the future success and 
implementation of AI-based CCAM services.  But informing 
end-users may not be enough for Trust. Some studies suggest 
that providing explanations for the actions of AVs can be 
effective on Trust [11]. Formal methods are also addressed as 
they increase the trust in the safety of AVs and assist in 
evidence-based assessment for certification and 
homologation of the processes [12].  
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B. Bias Awareness  
Bias analysis has been an increasing concern in recent 

years, after reports that AI models may discriminate against 
women, minorities and vulnerable groups in different ways 
[13]  but also fail to incorporate environmental and social 
externalities. A response to this increasing concern has been 
to develop bias tracking systems such as Fairness 360 [14], or 
the other 40+ solutions that promise to identify and mitigate 
bias in AI systems. However, AI bias is not limited to fairness, 
nor can it be identified by checking for bias at one specific 
moment in the life cycle of the algorithm.  
 

C. Explainability & Interpretability 
 Although ML models can be considered reliable, the 

effectiveness of these systems is limited by the current 
inability of machines to explain their decisions and actions to 
human users. Explainability has been addressed in many 
capacities but DARPA’s approach [9] can be seen as one of 
the closest approaches to real-life applications as it presents a 
clear vision to improve the pareto of the explainability vs. 
learning performance tradeoff for the well-known 2WAI 
algorithms (Deep learning, RNN, CNN etc.). Since the 2020s, 
3WAI has been promoted as the evolved version of 2WAI 
which is for better contextual adaptation to explain decisions 
while requiring fewer data and learning with minimal 
supervision. Different techniques exist for XAI [15]: i) Model-
Specific Techniques (white box); ii) Model-Agnostic 
techniques (black box). Among model-specific algorithms 
decision trees, DeepLIFT [16] and Supersparse Linear Integer 
Models (SLIM) [17] are the foremost ones. On the other hand, 
Model-agnostic techniques present more practical use of 
2WAI as black-box models/algorithms, especially within the 
context of visualization-based approaches for AI 
explainability. Shapley Additive explanations (SHAP) [18] 
and (Local interpretable model-agnostic explanations) LIME 
[19] are the widely adopted black-box techniques where 
SHAP is slower but more interpretable as compared to LIME. 
There is a general trend of using black box models 
encompassing AI for AVs. For instance, in perception, 
navigation, planning, and control, various visual techniques 
have been proposed to explain Neural Networks (NN) for 
scene understanding in AVs [20] (including Class Activation 
Map –CAM [21], VisualBackProp[22]) for explaining risk 
analysis and prediction (e.g. saliency maps [23]  for accident 

anticipation, scene graphs for AV risk assessment [24] and 
building trust in Avs [25], explaining collisions by treeSHAP 
[26]), for navigation and control via interactive visual 
interfaces (e.g. natural language generation [27]). GPU 
implementations of such algorithms as GPUTreeSHAP, are 
also proposed in research studies [28]. There is also a growing 
body of research on how AV explanations impact driver-
related outcomes, and consequently the adoption of AVs [29].  
D. Predictive Situational Awareness (SA) 

Situational awareness in CCAM is frequently used to 
model, analyse, and understand the behaviour of drivers in 
different contexts [30], but also how AVs use AI techniques 

to view and interpret their driving environment [31], and 
emulate how humans perceive and reason. To make 
predictions, AI-based reasoning techniques are employed to 
anticipate the development of critical situations and to make 
predictions. Several knowledge-based inferencing, heuristic 
algorithms, Bayesian reasoning, fuzzy logic, NN, and high-
end processing technologies have already enabled some 
aspects of AI-based SA, such as basic traffic sign recognition 
and lane detection, detection and intent estimation of 
pedestrians and road-users, detection and motion modelling of 
near-by vehicles, risk assessment and accident avoidance [32]. 
E. Verification and Validation (V&V) of AI-based Systems 

Perception and decision-making deals have the capability 
of overcoming complex and uncertain problems that need to 
be assessed through realistic models relying on critical traffic 
scenarios. The problematic nature of AI/ML in CCAM, along 
with the difficulty of finding suitable solutions, calls for 
research on the V&V of AI systems. VERIFAI [33] has been 
proposed as a software toolkit for the formal design and 
analysis of systems that include AI/ML. V&V approaches 
have been addressed for the safety of AVs [34] in recent years 
but cyber-physical security and privacy-aware V&V towards 
the homologation of vehicles have not been presented [35]. 
Moreover, Digital Twin (DT) has become the key technology 
bridging SA, V&V and TAI/XAI in intelligent transport 
systems. In recent years blockchain-enabled consensus 
mechanisms are integrated to enhance the security and 
efficiency of multi-stakeholder collaborations [36].  

IV. V-CYCLE METHODOLOGY 
An effective development methodology is proposed to 

unlock the potential of AI through the development of 
explainable and trustworthy human-centric tools, and methods 

 
Fig. 2. V methodology based on sprints 
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for the CCAM community, from the viewpoint of 5 targeted 
audience profiles for different types of transport in 6 
dimensions (Section II). This is required for accelerating the 
shift from the 2WAI towards the 3WAI through model-based 
n-sprint V-cycle, to overcome the challenges of road transport 
(safe, clean and efficient) (Fig.2). The proposed methodology 
follows time-boxed iterations throughout the development 
cycle to overcome the complexity of targeted technologies and 
challenges. In this view, the implementation methodology is 
based on an iteration-based n-V cycle, consisting of n V-type 
sprints for V&V of the AI outputs continuously. Therefore, 
each sprint becomes a complete V including development and 
integration and testing. The approach outputs in 5 interlacing 
layers (left blue layers): i) Concept and feasibility; ii) 
Requirements specification; iii) Architecture design; iv) Low-
level design; v) Implementation. The left arm of each V model 
is followed for understanding and (re)elicitation of needs, 
concept building and refinement and verification of AI 
solutions and tools. Within the initial definition phase, the 
requirements on the concept are collected and all boundary 
conditions targeting legislative, user-related aspects together 
with functional requirements are considered. Hence, the low-
level stakeholders such as development teams, data scientists, 
technical architectures, psychologists (human-like design), 
and automotive engineers play a critical role with high-level 
stakeholders. Once the concept phase is passed successfully, 
the design phase starts leading to further analysis, detailed 
design models, and the simulation of functions. The final step 
includes the development phase, which fulfils the realisation 
of TAI and XAI solutions. The right arm of n-V deals with the 
continuous integration, testing and validation of the 
components at various levels from different perspectives 
(explainability, trustworthiness, bias etc.) for the selected use-
cases. The process continues with system-level and vehicle-
level testing where the black-box testing strategy is applied. 
The first V is then followed by the second and further sprints 
to reach the alpha, beta and future releases until the Gold 
version is released and the homologation process starts.  

In the proposed methodology the gained experiences and 
knowhow can be transfered from one V-cycle to another 
through effective communication among developers and also 
by using online project management tools. Data and process 
management is also crucial in iterative methodologies similar 
to the proposed n-sprint V-cycle approach. Especially for 
large-scale projects there is a srong need to define the roles, 
specify the requirements and interlink the developments, 
achievements, tests, verification and validation procedures 
with each other. An ontological semantic interlinking is 
needed to model the relations between users, beneficiaries, 
developers, and all other stakeholders as well as requirements 
and functions of systems, subsystems, modules, services and 
data.  

 
V. DISCUSSION ON POSITIONING OF EU PROJECTS 

CCAM initiative is designed to support EU countries and 
the European automotive industry in their transition to 
connected and automated driving while ensuring the best 
mobility environment for the public. This initiative has been 
built on the previous research framework programmes (FP) 
starting from FP6 and continued in FP7, Horizon 2020 
(H2020) and recently in Horizon Europe. Building on the 
previous 'Europe on the Move' of May 2017, the European 
Commission (EC) put forward a strategy to carry Europe to a 
leader position for automated and connected mobility [37]. 

AI has been comprehensively covered in many projects 
funded by the EC in the recent H2020 programme. In this 
study, we present an overview of the front-runner projects that 
deliver AI-enabled technologies for the benefit of smarter 
CCAM solutions. The projects were analysed by considering 
their focus on the concepts like explainability (E), 
trustworthiness (T), Robustness and Reliability (R), Fairness 
and accountability (F), Privacy-awareness (P), Security-
awareness (S) and finally safety-awareness (SF). A subjective 
methodology is applied to score the level of E, T, R, F, P, S, 
and SF by analysing the (recent) project deliverables, patents, 
products and the papers published as the outputs of 
dissemination and exploitation outputs of the projects. The 
keywords related to the factors (E, T, R, F, P, S, and SF) and 
the techniques applied have been identified by the authors and 
scored as Low (L), Medium (M) or High (H) depending on the 
level of coverage. The results of the expert opinions about the 
selected projects (but not limited to) are presented in Table 1. 

Table 1. Analysis of projects funded under the H2020 programme 
according to the scope of AI in terms of the factors E, T, R, F, P, S, and SF 

Project AI Scope E T R
 

F P S S F 

PLANET Predictive 
Analytics/AI-based 
models for last-mile 
logistics and ocean 
shipping 

L M H L M H M 

ICT4CART Dynamic adaptation of 
vehicle automation 
level based on 
infrastructure 
information, smart 
parking, etc. 

L H M M H H M 

ASSURED AI-enabled smart 
charging optimisation 
for full-size Urban 
Heavy-Duty vehicles 

L M M L M M H 

LEVITATE Connected and 
autonomous vehicles 
on Traffic, Safety, & 
Emissions optimisation 
and societal impact 
analysis 

L M M H H H H 

HADRIAN characterization of 
novel driver roles and 
safer AD enhanced 
with AI 

M M M M H H H 

MEDIATOR Corrective and 
preventive driver 
mediation, Integrating 
driver states into fitness 
values  

H M M M H M H 

SAFE-UP Proactive safety 
systems and tools for a 
constantly upgrading 
road environment 

H H M M H H H 

RESIST AI-enabled road 
infrastructure 
monitoring in case of 
extreme weather 
conditions 

L H H M M H H 

PONEPTIS AI-enabled multisensor 
fusion and micro-
climate monitoring for 
road status 

L M M M M H H 

SAFEWAY GIS-based 
infrastructure 
management system 
for  optimized response 
to extreme events of 
terrestrial transport 
networks 

L M M M M H H 

OSSCAR AI-based 
understanding of future 
mixed traffic accident 

H H H M H H H 
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VIRTUAL Open-access virtual 
testing Protocols for 
enhanced road user 
safety 

H M M M M M H 

PIONEERS safety-critical accident 
scenarios and multi-
sensor fusion 

H M M M M M H 

GREEN 
CHARGE 

Smart energy 
management and 
charging in sustainable 
urban mobility plans 

L M M L M H H 

MOISTER AI-enabled EV sharing 
and smart parking & 
charging 

L M M L M H H 

INCIT-EV Decision support 
systems for EV 
charging and mobility 
planning 

L M M M M M M 

VISION-xEV Digital twin and 
vehicle models for 
optimised EV 
performance 

L M M M M H M 

Project AI Scope E T R
 

F P S S F 

LEAD Low-emission adaptive 
last-mile logistics 
through Digital Twins 

L M M M M M M 

ULaaDS AI-enabled micro-
logistics at the urban 
scale 

L M M M H H M 

DOMUS AI-enabled user-centric 
design optimisation for 
efficient EV in urban 
trans. 

M M M H H M M 

Multi-Moby Pre-emptive trail 
braking and tractor 
control 

L M M M H H H 

Park4SUMP AI-enabled parking 
management in 
sustainable urban 
mobility planning 

L M M M H H M 

INDIMO AI-supported inclusive 
and user-centric digital 
mobility 

M H M H H H L 

TRIPS Intelligent AI and 
Augmented Reality UX 
interfaces for disabled  

H H M H H M L 

SPROUT Co-created city-
specific future urban 
mobility scenarios 

H M L L M M L 

MORE AI-enabled Option 
generation, Co-created 
street designs and 
simulation of street 
activities 

H M M H H M L 

HARMONY Harmonised spatial and 
multimodal transport 
planning tools 

H M M H H M L 

EVC1000 AI-supported holistic 
control strategy and EV 
demonstrator 

L M M L M M H 

TUBE Identification of  
biomarkers for early 
detection of brain 
disease related to air 
pollution in CCAM 
activities 

H H M H H M H 

MODALES AI-powered 
understanding of the 
nature of driving 
behaviour concerning 
vehicle emissions 

H H M H H M H 

DIAS Detection of tampering 
using AI-powered On-
Board Diagnostics and 
Monitoring 

M M M M M H H 

L3PILOT Piloting Automated 
Driving on European 
Roads 

M H H M H H H 

                                                           
1 https://cordis.europa.eu/  

ENSEMBLE AI-powered platooning 
and situational 
awareness 

L M M M H H H 

HEAD 
START 

AI-supported testing 
and validation 
procedures of CAD 

L L L L M H M 

Note that the projects listed in Table 1 are selected from 
the EU’s Cordis platform that presents the repository of the 
EU-funded projects1 and many of these are still ongoing and 
new advancements in AI-driven solutions can be reported. 
According to the analysis results, AI has been widely adopted 
in nearly all analysed projects. AI-powered solutions have 
been addressed mainly for optimising vehicle performance, 
monitoring vehicle status, sustainable urban mobility and 
transportation planning, charging and energy management, 
emission analysis, driver behaviour analysis, AD and CAVs, 
multimodal mobility, road infrastructure monitoring, safety-
critical modelling, etc. It has also been identified that the 
majority of the projects did not address the explainability and 
trustworthiness as they did not position the 3WAI in the main 
scope. However, there is a significant effort in covering the 
privacy, security and safety factors and topics like fairness, 
robustness and reliability are gaining importance.  

VI. CONCLUSIONS AND FUTURE DIRECTIONS 
This paper presents a strategic overview of the strategy 

transition towards more TAI and XAI-oriented smart 
solutions, namely 3WAI, in line with the CCAM vision of 
Europe. This vision applies to integrated and multimodal 
transportation strategies in many countries where AVs are 
getting widespread for both people and goods transportation. 
The visionary approach tackles the key research directions 
like trust, explainability and interpretability, bias-awareness, 
situational awareness and V&V in the CCAM domain. The 
paper also presents a dynamic n-sprint V-cycle methodology 
presenting an effective strategy to improve the 3WAI 
solutions in new generation AI-based systems. A review of the 
EU-funded projects in the recent H2020 programme shows 
that the concept of explainable and trustworthy AI has not 
been fully covered in current projects. However, it is noted 
that there is an increasing consciousness of developing more 
explainable interfaces and trustworthy solutions that may 
improve the acceptability of AI in the CCAM context.  In 
further studies, reflections of the presented strategic vision are 
planned to be presented in CCAM applications which are 
supposed to rely on the proposed V-cycle methodology. The 
strategic vision is expected to be extended with new 
advancements in CAS and smart cyber-physical systems. 
Moreover, a conceptual semantic framework is planned to be 
developed which is supposed to be built on an ontological 
basis. The ontology-based approach will be used to describe, 
model and analyse the V-cycle operations and the 
interconnections between cycle iterations, i.e. conducting V-
cycle functions. 
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