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Abstract—In recent years, intelligent reflective surfaces
(IRS) have been widely used to improve communication qual-
ity. IRS has the characteristics of low cost and no delay, and can
be densely deployed to meet the communication needs of a large
number of devices. In this paper, IRS is applied to the downlink
multi-user communication system, and a central optimization
algorithm is proposed for rate optimization design. At the same
time, with the increasing demand of users for privacy, this
paper designs a federated learning (FL) optimization algorithm
to establish a rate optimization model for multi-user systems
under the premise of ensuring data security.

Index Terms—intelligent reflecting surface, federated learn-
ing, deep learning, multi-user communication

I. INTRODUCTION

With the increase in communication equipment, our re-
quirements for improving the data transmission rate and
transmission efficiency continue to increase. However, re-
lated technologies often have problems of high design
complexity and high energy consumption.We now have a
high demand for channel bandwidth resources, and hardware
design, cost, and energy consumption limit the bandwidth
increase. This paper improves the system information trans-
mission rate from the perspective of improving the signal-
to-noise ratio of the receiver.
In the process of signal propagation, obstacles are often

encountered, resulting in poor communication link per-
formance. In the downlink communication system model
designed in this paper, the base station and the user are
connected by deploying the IRS reflection unit to create
a communication link so that the signal can bypass the
obstacle. The IRS is a plane composed of a large number of
passive reflective elements. The IRS controller adjusts the
incident signal by controlling the reflection element, so that
the IRS transmits the signal with the characteristics of no
delay and low power consumption. In addition, the IRS has
a simple structure, is easy to deploy, and can be intensively
deployed.
The design goal of this paper is to configure the IRS

reflection unit to obtain the optimal transmission rate. In
order to obtain the optimal IRS configuration scheme, the
training for deep learning (DL) is required. Traditional
centralized data training has a great risk of data leakage
and cannot meet the needs of users and institutions for

data privacy protection. In the case of data silos, it is
difficult for institutions to complete model establishment
and optimization. This paper uses FL to enable multiple
users to jointly build a model without uploading data. In FL,
users perform model training locally, upload the local model
to the central server, and obtain the global model through
aggregation. After simulation verification, the effect of the
final global model is basically the same as that of the model
trained on the central data.

II. IRS-ASSISTED COMMUNICATION MODEL
In this paper, an IRS-assisted multi-user downlink com-

munication system is designed, including a base station,
multiple users, and an IRS with M reflection elements, as
shown in Figure 1. When the communication signal between
the user and the transmitter is blocked by an obstacle, a
reflection link is established through the IRS to realize
normal communication. The signal received by each user
is composed of the signals reflected by all the reflecting
elements of the IRS. We assume that the channel state infor-
mation of all users is independent and identically distributed
(IID).The following is a system model for individual users.

Fig. 1: System model.

A. System Model
In the single-user system, the orthogonal frequency di-

vision multiplexing (OFDM) technology including K sub-
carriers is adopted.This paper defines the communication
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channel hR,k, hT,k from the transmitter to the receiver at
the kth subcarrier, which is the communication channel from
the user and the base station to the IRS. The straight-line
link from the base station to the user is ignored. Transmit
signal sk, noise vk, the received signal can be expressed as:

yk = hT
R,kΨkhT,ksk + vk = (hR,k ⊙ hT,k)

T
ψksk + vk (1)

Ψk is the reflection matrix of the IRS, and ψk is the
reflection beamforming vector, Ψk = diag(ψk) . The
reflection matrix only changes the phase of the signal.

B. Channel Model

The channel between the IRS and the transmitter, hT,k ,
consists of Q paths. the delay of the qth is τq . The azimuth
angle of the arriving signal is ϕq ∈ [0, 2π) , and the elevation
angle is θq ∈ [0, π) . The path loss is ρT , and the channel
coefficient αq . Let denote p(τ) the pulse-shaping function
of a signal of interval Ts computed at τ second.
Define the array response vector of the arriving signal

on the IRS reflector . Using the tap delay model for
multipath channels, let D be the number of channel taps,
d = 1, 2,…, D , then the channel with delay d can be
expressed as:

hT,d =

√
M

ρT

Q∑
q=1

αlp(dTs − τq)a(ϕq, θq) (2)

So:

hT,k =

D−1∑
d=0

hT,de
−j 2πkd

K (3)

This paper predefines a codebook R , which contains all
reflected beamforming vectors. The frequency band utiliza-
tion at the receiver is:

r =
BW

K

K∑
k=1

log2(1 + SNR
∣∣∣(hT,k ⊙ hR,k)

T
Ψ
∣∣∣
2

) (4)

SNR is the signal-to-noise ratio, and BW is the system
bandwidth. The optimal reflection vector corresponding to
the optimal velocity is:

Ψ∗ = argmax
Ψ∈R

K∑
k=1

log2(1 + SNR
∣∣∣(hT,k ⊙ hR,k)

T
Ψ
∣∣∣
2

)

(5)
In this article, the IRS contains N active units, N ≪ M

. In addition to simply reflecting the signal, the active unit
can also receive and transmit pilot signals. The active unit
receives the pilot signal of the base station, and obtains the
transmit channel information after processing. At the same
time, the active unit transmits a pilot signal to the user, and
the user obtains the receiving channel information through
analysis.
Define the channel vector from the transmitter to the IRS

active unit as the sampling channel:

hT,k = HNhT,k (6)

HN is to select the part corresponding to the IRS active
unit from the original channel.
Then the IRS sampling channel at the kth subcarrier is:

hk = hT,k ⊙ hR,k (7)

III. CENTRALIZED OPTIMIZATION ALGORITHM

A. Algorithm Structure
In this paper, the training data of each user is acquired

in the same way, that is, the sampling channel is acquired
by transmitting pilot signals from the IRS active unit and
the base station. Then, the sampled channel information is
transmitted to the cloud server for centralized training.
This algorithm uses DL and supervised learning (SL)

methods for model training. The input (feature) of the deep
learning dataset S is the sampled channel vector ĥ , and the
output (label) is the system rate r .
DL chooses the multilayer perceptron as the neural net-

work and the root mean square error (RMSE) as the error
function. According to the mathematical model obtained by
training, the corresponding optimal rate can be predicted
through the input channel vector, and then the corresponding
reflection vector can be obtained, and finally the configura-
tion of the IRS is completed.
The specific algorithm structure is shown in Algorithm 1.

Algorithm 1 Centralized Optimization Algorithm
Phase I : Dataset construction
for s = 1 to S do
According to the pilot signal, get the sampling channel
ĥ(s)
for n = 1 to R do
Set IRS reflection vector ψn

Get the corresponding rate Rn(s)
end for
At sample s, r(s) = [R1(s), R2(s), . . . , R|R|(s)]
Get the corresponding optimal reflection vector number
n∗ = argmaxn[r(s)]n , the optimal reflection vector is
ψn∗

Dataset creation S ← (ĥ(s), r(s))
end for
Data set S is divided into training data set St, validation
data set Sv

Phase II : Deep learning training
Input: dataset S
Neural Networks: Multilayer Perceptrons
Output: system model

B. Simulation Configuration
In this paper, the system scene model is constructed from

the DeepMIMO dataset, as shown in Figure 2. Rows 1000
to 1300 of the grid are divided equally into 60 users, each
occupying 5 consecutive rows. The location of the base
station is (800,90) and BS3 is the location of the IRS.
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Define the IRS reflected beam codebook as the discrete
Fourier transform(DFT) codebook, D = DH ⊗ DV . The
horizontal and vertical dimensions of the angle of incidence
MH ,MV are the number of uniform planar array(UPA)
antennas in the horizontal and vertical directions. The range
of the angle of incidence is 0π . The codebook in the
horizontal direction is shown in Equation 8.
Each user is randomly located on an arbitrary grid in their

area. The DL dataset consists of 54,300 sampling points
of data from 60 users. The sampled channel vectors and
corresponding rates are normalized to form a dataset. The
dataset is divided into training dataset (45000 points) and
validation dataset (9300 points).
Other parameters are shown in Table I.

TABLE I: System Simulation Parameters

Simulation Parameter Value
Frequency band 28GHz
Bandwidth 200MHz

Number of OFDM subcarriers 512
Antenna gain 5dBi

Antenna spacing 0.5λ

C. Simulation Results

Set the size of the UPA antenna used by the IRS to
M=[(1,32,32); (1,40,40); (1,48,48); (1,56,56)]. Set the num-
ber of active units to N=8, and the training dataset size to
S =[2,2000,5000,9000,18000,27000,36000]. The simulation
results are shown in Figure 2. The user’s receiving rate
increases with the increase of the training data set, and
gradually approaches the target rate. As the size of the
IRS increases, the reception rate increases significantly.
When the IRS size is 56 × 56, the achievable receive
rate is 896.52Mbps, which is 98.46% of the target rate.
This illustrates the potential of this algorithm in realizing
largescale smart reflectorassisted communication.

IV. FEDERATED LEARNING OPTIMIZATION ALGORITHM

A. Algorithm Structure

In the Section III, we discussed the method of training
the system model through DL after all channel data is
transmitted to the central server. However, this operation
is unreliable for users who need privacy protection, because
uploading data means there is a risk of privacy leakage.
This paper proposes an FL optimization algorithm to

allow all users to participate in the training process,as shown
in Figure 3. For each communication, the server randomly
selects a certain percentage of users to receive the global
model. After the user obtains the global model, local model
training is performed. Multiple local models are uploaded
to the server for integration to obtain a new global model.
Repeat the communication process for E times to obtain a
global model that can adapt to all participants.

Assuming that L users are selected to participate in
training each time, in the i communication, the local model
of the j user is wj

i , and the global model is:

wi+1 =
1

L

L∑
j=1

wj
i (9)

Users use DL for local training. DL uses a multilayer
perceptron as the neural network and chooses the mean
squared error (MSE) as the loss function. The data set
acquisition method for DL is the same as the Section III.
The specific algorithm structure is shown in Algorithm 2.

Algorithm 2 Federated Learning Optimization Algorithm
for i in range(E) do
The server randomly selects L users and sends the
global model
User updates local model wi

Validation rate r̂i
for j in range(L) do
Load local dataset Sj

Local deep learning training, get local model param-
eters wj

i

wi+1 = wi+1 +
1
nw

j
i

end for
end for
Final model parameters wE , validation rate r̂E

B. Simulation Results
In the centralized data processing method, the maximum

amount of sample data uploaded by all users and the cloud
server is set to be DC . The federated learning method
processes data. The amount of parameter data uploaded in
one communication is DF .
As can be seen from Table II, when the size of the

reflective surface is 32 × 32 , 40 × 40 , 48 × 48 , the
ratio of DF to DC is much smaller, which greatly reduces
the frequency band pressure. When the size of the reflector
is 56 × 56, DF is slightly smaller than DC , Not very
good at mitigating band pressure.This shows that for small
IRS reflective surfaces, the federated learning optimization
algorithm can play a role in reducing the pressure on the
bandwidth of a single communication. Considering that the
training of federated learning requires multiple communi-
cations, the existing design requires local users to perform
multiple data training and parameter uploading.

TABLE II: The Total Amount of Data Uploaded by Com-
munication Users at One Time

Type of Data/ Table Column Head
Size of IRS 32× 32 40× 40 48× 48 56× 56

DC 7.414e7 9.499e7 1.205e8 1.506e8
DF 2.097e7 4.198e7 7.668e7 1.305e8
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Fig. 2: Achievable rates for different reflector sizes.

Fig. 3: Federated Learning Process.

As shown in Figure 4, under the premise that the location
and number of sample collection points remain unchanged,
and the number of users is set to be 20, 30, 50, and 90,
respectively, the training data set for each user is 2250,
1500, 900, and 500. Set the number of communications to
800 times, the size of the IRS reflective surface to 56× 56
, and do not change other parameter settings. It can be
seen that in the process of 800 communications, the more
the number of users, the lower the achievable receiving

rate. This shows that in a sized IRS-assisted communication
system, the higher the user density, the more difficult it is
for the federated learning optimization method to achieve
an overall high rate.
It is worth noting that when the number of communica-

tions is more than 300 times, the achievable rate difference
between 50 and 20 users is very small, and can reach 92% of
the optimal rate. This shows that when the number of users
is within a certain range, the federated learning optimization
algorithm has a good effect.

Fig. 4: Achievable rates for scenarios with different numbers
of users.

V. CONCLUSION
In this paper, a centralized optimization algorithm and

a joint learning optimization algorithm are proposed based
on the IRS assisted downlink multi-user communication
system. The centralized optimization algorithm conducts
centralized deep learning training on the sampling data
of all users, maps the sampling channel to the maximum
receiving rate, and finally realizes the configuration of
IRS reflector. Considering the data security problem, this
paper proposes a federated learning optimization algorithm,
which allows users to jointly build system models without
providing underlying data. Comparing the two algorithms,
when the reflection surface size is small, the amount of data
uploaded by the federated learning optimization algorithm is
small, which can reduce the bandwidth pressure to a certain
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extent. Federated learning optimization algorithm has broad
prospects in multi-user scenarios.
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