Delay-aware Joint Resource Allocation in Cell-Free
Mobile Edge Computing

Fitsum Debebe Tilahun*, Ameha Tsegaye Abebe’, and Chung G. Kang*
*School of Electrical Engineering, Korea University, Seoul, Republic of Korea
TSaumsung Research, Seoul, Republic of Korea
Email: *{fitsum_debebe, ccgkang} @korea.ac.kr, Tamehat@samsung.com

Abstract—This paper investigates a joint resource allocation
problem in cell-free mobile edge computing system which intends
to minimize the number of users subjected to outage, due to
failure to meet user-specific delay constraints. Accordingly, the
number of APs serving each user, i.e., dynamic cluster size, uplink
transmit power and computing resources at the edge server are
jointly optimized based on deep reinforcement learning (DRL)
algorithm.

Index Terms—mobile edge computing (MEC), cell-free MEC,
joint resource allocation, deep reinforcement learning

I. INTRODUCTION

Dynamic computation offloading to edge computing plat-
forms has recently become one of the principal techniques
to meet the diverse and ever-increasing demands of advanced
multi-media applications. In particular, in a multi-user mobile
edge computing (MEC) system, it is essential to jointly opti-
mize the limited communication and computing resources at
the network edge taking into account the respective application
constraints. Moreover, the performance of the design is highly
affected by the reliability of the access link as the users depend
on it to offload intensive computations and retrieve processed
results from an edge server. Nonetheless, most of the existing
literature on optimizing resource allocation in MEC systems
are centered on cellular MEC systems, in which the wireless
access links are unreliable.

A cell-free massive MIMO system, one of the recently
proposed network infrastructures for beyond-5G and 6G net-
works, opens up a new horizon for a consistently low-delay
computational task offloading as it can provide reliable com-
munication links for a seamless edge computing by virtually
eliminating cell-edge users. In our previous work in [1], we
presented a distributed joint communication and computing
resource allocation (JCCRA) scheme based on multi-agent
reinforcement learning in order to minimize the total energy
consumption of the users subject to the delay constraints.
However, the users’ locations are fixed. Moreover, dynamic
cluster design and computing resource allocation at the edge
server are not part of the joint optimization.

In this paper, we limit our focus to minimizing the number
of users subject to service outage incurred by a failure to
meet the respective user-specific delay constraints. To this end,
we intend to jointly optimize the number of APs involved
to serve each user, i.e., a dynamic cluster size, along with
the allocation of uplink transmit power and portion of edge

978-1-6654-9927-9/22/$31.00 ©2022 IEEE

81

computing resource allocation for each user. This requires
frequent re-evaluation of the optimal values in response to the
dynamics in the MEC system, such as the mobility of the users,
stochastic channel conditions, and arrival of the tasks with
random sizes. Moreover, the JCCRA solution should converge
rapidly within the ultra-low delay constraints. To this end, we
propose a deep reinforcement learning (DRL)-based solution
approach to derive efficient and flexible JCCRA policy.

II. SYSTEM MODEL

Let M {1,2,...,M} denote a set of geographically
distributed access points (APs), which are connected to a
central processing unit (CPU) via error-free fronthaul links.
The APs serve a limited number of single-antenna users
from K {1,2,..., K}. Moreover, the CPU is equipped
with an edge server of finite computing capacity Y (in
cycles per second), which is shared among the users for edge
computation, in addition to local processor with fj (in cycles
per second) capacity owned by k € K. For the sake of
simplicity, we assume the system operates in a discrete time
steps t = 1,2, - - -, with a duration of At.

We assume the two-dimensional location of the k-th user
at a given time step t, denoted as dy, (¢), dynamically varies
according to dy (t +1) = dg (t) + vi (¢) At, wherein the
velocity vector, vy (t), evolves according to Gauss-Markov
mobility model as discussed in [2]. Taking the user mobility
into account, we adopt a user-centric approach in which
the k-th user is served only by a subset of APs, C; C
{APy, APy, -- , APy, }, where the maximum cluster size
N, < M. The selection of the APs is done based on the
strength of large scale channel gains, (,,, for all m € M,
and k € K.

At the beginning of every time step ¢, each user gener-
ates a computational task, described by a random task size
Qr (t)(in bits), a processing density L (cycles/bit), and a
maximum allowed execution delay tolerance ¢{. In order to
minimize the total execution delay, we assume each user
fully utilizes the local computing power. In other words, the
proportion of the task to be computed locally is fixed to

ag (1) = in(l tf)’“Lk while the remaining portion is offloaded to
the edge server. Denoting the computing resource allocation
at the edge server for the k-th user by fZ, the delay for
edge computation tzdge can be given as a sum of computing

delay at the CPU "7 (t) = % and transmission
k

APCC 2022



delay ti" (t) = %, where the rate of the k-th user
Ry, (t) is a function of the uplink transmit power py (¢) and
the dynamically configured cluster Cj, (¢). Then, the total delay
for computing @, (¢) task bits at a given time step ¢ can be
edge () ,tz). As long as the

represented as ¢, (t) 4
total execution delay exceeds the maximum delay tolerance,
i.e., t), (t) > t, then the user is subject to outage. Then, the
objective of the joint resource allocation is to minimize the
total number of users in outage by determining a dynamic
cluster size Ni(t), uplink transmit power py (t), and edge
computing resource allocation f,f (t) for every user.

max (t

III. DRL-BASED JOINT RESOURCE ALLOCATION

In order to derive effective resource allocation policy, we
train a DRL agent centrally at the CPU based on deep deter-
ministic policy gradient (DDPG) algorithm [3], as the decision
variables are continuous-valued. The algorithm maintains two
primary neural networks, the actor 6# and the critic #9 for
policy and value approximations, respectively, in addition to
their respective delayed copies which serve as a target net-
works. Through continuous interactions with the environment,
the agent learns to map the state of the environment s (t)
into optimal actions a (t), guided by the reward r (t) collected
from the environment. The transitions from past experiences
are stored in the replay buffer. The actor network parameters
are updated according to the deterministic policy gradient by
sampling a mini-batch of transition from the buffer. The critic
network, on the other hand, is trained to minimize the temporal
difference (TD) error.

At a given time step ¢, the action of the agent corresponds
to a joint resource allocation for all users, i.e. a(t)
{Nk(t),pk(t),f,f(t)}f:l. We define the state as a tuple of
offloaded data sizes {(1 — ak(t))Qk(t)}le, delay require-
ments {tg}:zl, rate { Ry (t — 1)},_, and action a(t—1) from
the previous time step (¢ — 1). In order to reflect the design
objective, the reward 7(t) is defined to penalize the agent in
proportion to the number of users subject to outage.

IV. SIMULATION RESULTS

We consider a cell-free MEC consisting of K = 10 users
and M = 100 APs which are uniformly distributed on an area
of 1km?. We assume that up to 50% of the APs can be included
to form user cluster. As discussed in the previous section, a
location of the user follows a Gauss-Markov mobility model.
The large scale channel gain is given as [, = —30.5 —
36.710g,o(dmk ) + Fomg, wWhere dy,y is the distance between the
k-th user and m-th AP, while F,,; ~ CA(0,16) corresponds
to a shadowing fading. The system bandwidth is set to 10
MHz. Furthermore, the size of the computational task at each
user is assumed to be uniformly distributed in the range of [3.5,
8.5] Mbps. Other simulation parameters are set as follows:
At = t¢ = 1ms, Ly = 500, fx = 1GHz, and fF = 100GHz.

Both actor and critic networks of the agent are implemented
with fully connected layers of 256 and 128 neurons. The
hidden layers are activated by ReLu activation function, while

82

0.35

—— Proposed DRL-based scheme
Heuristic 2
Heuristic 1

0.30

0.25

0.20 f

o o T o

Average Outage Rate

0.00

50 100 150 200 250

Training Episodes

300 350 400
Fig. 1: Performance comparison: Heuristics vs. DRL-based

Algorithm

sigmoid and softmax activation functions are used at the output
of actor network. The learning rates for the actor and critic
are set to 0.0001, and 0.001, respectively.

The proposed scheme is compared against two heuristic
algorithms. In heuristic 1, the edge computing resource is
allocated equally among the users, while in heuristic 2, it is
proportionally shared to each user based on the size of the
offloaded task. In both cases, the transmit power is determined
according to the uplink fractional power control, as done in
[1]. Moreover, the number of APs forming user cluster is fixed
to the maximum size.

As shown in Fig. 1, the proposed DRL-based algorithm has
the least average outage rate as compared with the heuristic
algorithms, meeting the computational delay requirements the
most.

V. CONCLUSION

In this paper, we propose a deep reinforcement learning
(DRL)-based joint resource allocation scheme in cell-free
MEC to meet the respective delay constraints. We showed that
the proposed scheme provides substantially more quality of
service (consistently low latency task execution) as compared
to the heuristic algorithms.

ACKNOWLEDGMENT

This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea government
(MSIT) (No.2020R1A2C100998413).

REFERENCES

[11 E D. Tilahun, A. T. Abebe, and C. G. Kang, “DRL-based Distributed
Resource Allocation for Edge Computing in Cell-Free Massive MIMO
Network,” arXiv:2208.10725, 2022.

S. Batabyal, P. Bhaumik, “Mobility Models, Traces and Impact of
Mobility on Opportunistic Routing Algorithms: A Survey” in [EEE
Communications Surveys & Tutorials, vol. 17, no. 3, pp. 1679-1707,
2015.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, ”Continuous control with deep reinforcement learning”
in Proc. International Conference on Learning Representations (ICLR),
2016.

[2]

(3]



