
Phase Code Discovery for Pulse Compression
Radar: A Genetic Algorithm Approach

Xinyan Xie, Runxin Zhang, Yulin Shao, Member, IEEE, Lu Lu, Member, IEEE

Abstract—Discovering sequences with desired properties has
long been an interesting intellectual pursuit. In pulse compres-
sion radar (PCR), discovering phase codes with low aperiodic
autocorrelations is essential for a good estimation performance.
The design of phase code, however, is mathematically non-trivial
as the aperiodic autocorrelation properties of a sequence are
intractable to characterize. In this paper, we put forth a genetic
algorithm (GA) approach to discover new phase codes for PCR
with the mismatched filter (MMF) receiver. The developed GA,
dubbed GASeq, discovers better phase codes than the state of
the art. At a code length of 59, the sequence discovered by
GASeq achieves a signal-to-clutter ratio (SCR) of 50.84, while
the best-known sequence has an SCR of 45.16. In addition, the
efficiency and scalability of GASeq enable us to search phase
codes with a longer code length, which thwarts existing deep
learning-based approaches. At a code length of 100, the best
phase code discovered by GASeq exhibit an SCR of 63.23.

Index Terms—Genetic algorithm, pulse compression radar,
phase code, mismatched receiver, signal-to-clutter ratio.

I. INTRODUCTION

Pulse compression radar (PCR) is a class of radar that
solves the detection range and resolution trade-off in classical
radar systems [1]. As illustrated in Fig. 1, the principles of
PCR are 1) modulating the transmitted pulse by a sequence
of phase codes, and 2) matched filtering (MF) the received
signal by the same phase code, which is known as the MF
receiver [2]. In so doing, PCR has both a long detection range,
because the power of the whole pulse is collected by MF,
and a high detection resolution, because the modulated pulse
exhibits a large bandwidth – the detection resolution of radar
is proportional to the bandwidth of the transmitted pulse [3].

When developing a PCR system, the main design objective
is sidelobe suppression by carefully crafted phase codes and
the receiver structure. High sidelobes are detrimental to PCR
as they increase both the miss-detection rate and the false
alarm rate [4]. In the literature, there are two main receiver
structures: the MF receiver [5]–[7] and the mismatched filter
(MMF) receiver [8]–[10].

X. Xie, R. Zhang, and L. Lu are with the University of Chinese Academy
of Sciences, Beijing, 100049, China, and also with the Key Laboratory of
Space Utilization, Technology and Engineering Center for Space Utilization,
Chinese Academy of Sciences, Beijing, 100094, China (emails: {xiexinyan20,
zhangrunxin20}@mails.ucas.ac.cn, lulu@csu.ac.cn).

Y. Shao is with the Department of Electrical and Electronic En-
gineering, Imperial College London, London SW7 2AZ, U.K. (e-mail:
y.shao@imperial.ac.uk).

This work was supported in part by the Key Research Program of the
Chinese Academy of Sciences under Grant ZDRW-KT-2019-1-0103.

TRANSMITTER

RECEIVER

+ + + +- …

Phase-coded pulse

𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇−𝑇𝑇𝑇𝑇
……

Sidelobe suppression

TARGET

CIRCULATOR

RADAR

Fig. 1. Schematic diagram of PCR: a phase-coded pulse is emitted; the design
objective of the phase code and receiver is sidelobe suppression.

Most research efforts on PCR have been devoted to the
design of binary phase code with the MF receiver [7]. In
actuality, this problem corresponds to the famous merit factor
problem in complex analysis, that is, discovering the binary
sequence with the smallest aperiodic autocorrelations. The
main techniques are theoretical approaches [5], constrained
search [6], exhaustive computation, and stochastic search. We
refer readers to the excellent survey [7] for more detailed
explanations. On the other hand, as far as the PCR estimation
performance is concerned, the other line of receiver design,
i.e., the MMF receiver, is more promising. Unlike the MF
receiver that cross-correlates the received pulse by the same
binary phase code, the MMF receiver utilizes a real sequence
to collect the received power [8], [10] and optimizes the real
sequence such that the signal-to-clutter ratio (SCR) – which
is also known as the signal-to-interference ratio (SIR) – is
maximized, thereby achieving remarkable performance gains
over the MF receiver [10]. The phase code design for the
MMF receiver, however, is relatively few because of the lack
of mathematical instruments.

Motivated by data-driven approaches such as deep learning
(DL) [11]–[13], recent works [13], [14] revisit the phase-code
design problem for PCR with the MMF receiver and discover
good phase codes with high SCR. The authors in [14] pro-
posed a deep reinforcement learning (DRL) approach, named
AlphaSeq, to search for good phase codes. In AlphaSeq, the
phase code design problem is described as a game and the SCR
of the discovered phase code is defined as the reward. Over
the course of DRL, the algorithm learns to discover better and
better phase codes with increasingly higher SCR. On the other
hand, HpGAN [13] utilizes the DL-based generative model,
i.e., generative adversarial network (GAN), to generate new

70978-1-6654-9927-9/22/$31.00 ©2022 IEEE APCC 2022

phase codes.
In this paper, we put forth a genetic algorithm (GA)

approach, dubbed GASeq, to discover phase codes with low
aperiodic autocorrelations for PCR with the MMF receiver.
Compared with DL-based schemes, our approach discovers
better phase code with higher SCR. Specifically, at a length
of 59, the best phase code discovered by GASeq achieves an
SCR of 50.84, while the best sequences found by AlphaSeq
and HpGAN have an SCR of 33.45 and 45.16, respectively. In
addition, our approach is much more efficient than DL-based
approaches. Compare with AlphaSeq, for example, GASeq
visits 166 times fewer states in order for the algorithm to
converge and the discovered sequence is much better. Thanks
to the high efficiency and scalability, we extend GASeq to
discover longer phase codes. At a length of 100, the discover
sequence achieves an SCR of 63.23.

The remainder of this paper is organized as follows. Section
II describes the system model for PCR and introduces the
MMF receiver. Section III details the proposed GA approach,
i.e., GASeq. Section IV evaluates the performance of GASeq
benchmarked against prior arts. Section V concludes this
paper.

Related work on GA – Inspired by Charles Darwin’s “natural
selection”, GA was first introduced by John Holland [15]
in 1975 as a metaheuristic approach to solve optimization
problems [16]. GA has been applied to a variety of disciplines
[17], such as network routing protocol, image processing, data
mining, neural networks, to name a few.

GA has also been used in radar systems. In [18], for
example, the authors proposed a GA to divide the phase array
of radar into the subarrays in order to reduce the hardware
cost. Ref. [19] applied GA to a multiple-input and multiple-
output (MIMO) radar to find the best locations for transmit
and receive antenna arrays. There have also been studies
in GA for PCR with the MF receiver. In [20], the authors
enhanced the GA by a local search scheme and find phase
codes with good peak sidelobe levels. In [21], the authors
combined the global minimum convergence property of GA
with the fast convergence rate of hamming scanning algorithm,
and discovered phase codes with good discriminating factors.

II. SYSTEM MODEL

We consider a phase-coded pulse compression radar system,
where the transmitted pulse is modulated by a sequence of
binary codes s = {sn ∈ {+1,−1} : n = 0, 1, ..., N − 1}, and
+1 and −1 correspond to phases 0 and π, respectively. The
received signal, on the other hand, is a sum of many echoes
from various range bins with different amplitudes and delays.
In particular, we denote by h0 the radar cross section (RCS)
of the range bin of interest. The received discrete-time model
is given by

y = h0s+

N−1
i=1−N,i̸=0

hiJis+w, (1)

where {hi : i = 1−N, 2−N, ..., N−2, N−1, i ̸= 0} denotes
the RCS of interfering range bins; w is the white Gaussian
noise vector; Ji, ∀i, denote N ×N shift matrices that capture
the propagation time needed for the clutters to reach the radar
receiver. In particular, Ji can be written as

Ji ≜

1 · · · i · · · N

1 0 1 · · · 0
0 1

...
... 0 1

0
N 0 0

, (2)

and Ji = J⊤
−i.

Given the received signal y, our goal is to estimate h0,
the SCR of the range bin of interest. To this end, we cross-
correlate the received sequence y by a real vector x, yielding

x⊤y = h0x
⊤s+

N−1
i=1−N,n̸=0

hix
⊤Jis, (3)

where w is omitted since the noise term is often dominated
by interference.

Note that the RCS of different range bins {hi} are unknown
to the radar receiver. The sequence discovery problem in PCR
is then discovering the optimal pair of sequences (s, x) such
that the signal-to-clutter ratio (SCR) γ is maximized, where

γ =
(x⊤s)2N−1

i=1−N,i̸=0(x
⊤Jis)2

. (4)

Moreover, let R ≜
N−1

i=1−N,i̸=0 Jiss
⊤J⊤

i , γ can further
be simplified as [10]:

γ =
(x⊤s)2

x⊤Rx
=

(x⊤R
1
2R− 1

2 s)2

x⊤Rx

(a)

≤ (x⊤Rx)(s⊤R−1s)

x⊤Rx
= s⊤R−1s, (5)

where (a) follows from the Cauchy-Schwartz inequality. The
equality holds when R

1
2x = R− 1

2 s. Thus, for a given s, the
optimal x∗ that maximizes γ is x∗ = R−1s. The sequence
discovery problem in SCR can be refined as

s∗ = arg max
s∈{+1,−1}N

s⊤R−1s. (6)

The combinatorial optimization problem in (6) is non-
trivial to solve analytically. Thus, prior work often resorts to
algorithmic solutions such as exhaustive search [10], heuristic
search [6], and learning-based algorithms [13], [14]. In this
paper, we put forth a GA-based solution to discover better
phase codes s for SCR.

Remark: As prior works [10], [13], [14], this paper does
not consider fractional misalignment among echoes. If frac-
tional misalignment is further considered, interested readers
may refer to [22]–[24] for signal processing techniques to
process the received signal. In particular, [23] deals with
discrete source (e.g., binary phase codes), while [22], [24]
deal with continuous source (e.g., polyphase codes).

71

𝑺𝑺𝑺𝑺𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑘𝑘𝑘𝑘

𝑺𝑺𝑺𝑺𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘𝑘𝑘

�𝑺𝑺𝑺𝑺 𝑘𝑘𝑘𝑘+1

𝑺𝑺𝑺𝑺𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟
𝑘𝑘𝑘𝑘

Initialization

Evaluation 𝑓𝑓𝑓𝑓 𝒔𝒔𝒔𝒔𝑝𝑝𝑝𝑝
𝑘𝑘𝑘𝑘

Tournament selection

Crossover

Mutation

Convergence prevention

𝑺𝑺𝑺𝑺 0

𝑺𝑺𝑺𝑺 𝑘𝑘𝑘𝑘+1

𝑺𝑺𝑺𝑺𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑘𝑘𝑘𝑘

�𝑺𝑺𝑺𝑺 𝑘𝑘𝑘𝑘

Elite selection

Fig. 2. The signal flow of GASeq for phase code discovery in PCR.

III. GASEQ: A GENETIC ALGORITHM APPROACH

GA algorithms solve combinatorial optimization problems
by a natural selection process that mimics biological evolution:
in the first generation, it generates a population of phase
codes as candidates; in subsequent generations, it repeatedly
improves the candidates based on the population of the last
generation such that the candidates evolve towards the optimal
solution. In this section, we detail our design of the GASeq
for phase-code discovery.

To start with, we outline the signal flow of GASeq in Fig. 2.
Initialization. The initialization phase generates a popula-

tion of phase codes as initial candidates. Let the population
size be P , the initialized population can be written as an N×P
matrix:

S(0) =
[
s
(0)
1 , s

(0)
2 , · · · , s(0)P

]
, (7)

where each column s
(k)
p ∈ {+1,−1}N is a phase code

of length N ; the superscript k = 0, 1, 2, ...,K denotes the
index of generation (there are K + 1 generations and the
initialized population is the 0-th generation); and the subscript
p = 1, 2, ..., P denotes the index of the phase code in the
population.

In general, the elements of S(0) are sampled uniformly
from {+1,−1}. Another idea is incorporating existing phase
codes discovered by AlphaSeq [14] and HpGAN [13] into
S(0) to generate more promising offspring and speed up the
convergence. We will compare different initialization schemes
in Section IV.

Evaluation. The evaluation process computes the “fitness”
of individual phase code in the current population, where fit-

ness reflects how good a phase code is in terms of (6), and can
be computed by f(s

(k)
p) ≜ (s

(k)
p)⊤R−1s

(k)
p , ∀s(k)p ∈ S(k).

Based on the current population S(k) and the evaluated
fitness, we next determine the next population S(k+1).

Elite selection. To goal of selection is to retain superior
candidates and eliminate inferior candidates from the last
population according to their fitness. In order to retain the
best candidates of S(k), we first perform elite selection to
identify E phases codes in S(k) with the largest fitness. Let us
denote the elite codes by S

(k)
el ∈ RN×E , which is a submatrix

of S(k). The elite codes will be directly assigned to S(k+1),
while the other P −E vacancies in S(k+1) are determined by
tournament selection, as detailed below.

Tournament selection. In this operation, we perform P−E
tournaments [25] to select P − E candidates to form a new
matrix S

(k)
ts ⊂ S(k). In each tournament, we randomly select

M phase codes without replacement from S(k) (including the
elites) and compare their fitnesses. The winner, i.e., the phase
code with the maximal fitness among the chosen M phase
codes, goes to S

(k)
ts .

For the phase code with the i-th largest fitness in S(k), the
probability that it wins a tournament is

pi =

(
P − i
M − 1

)

(
P
M

) =
M · (P − i)!(P −M)!

P !(P − i−M + 1)!
. (8)

Therefore, the probability that it goes to S
(k)
ts after tournament

selection is 1− (1− pi)
P−E .

Crossover and mutation. Crossover refers to the operations
of replacing and recombining the parts of a pair of candidates
(i.e., parents) to generate a new candidate (i.e., child). To start
with, we combine the tournament-selected phase codes S

(k)
ts

with the elites S
(k)
el , yielding S̃(k) =

[
S

(k)
ts ,S

(k)
el

]
.

With crossover, we first randomly select two phase codes
s
(k)
i , s

(k)
j , i, j ∈ {1, 2, · · · , P} from S̃(k). Then, we split

both s
(k)
i and s

(k)
j into two parts at a random point and

form a new phase code by concatenating the first part of
s
(k)
i and the second part of s

(k)
j . For example, if s

(k)
i =

[1,−1, 1,−1, 1,−1, 1]⊤, s(k)j = [−1,−1,−1, 1, 1, 1, 1]⊤, and
we split after the third symbol, the newly constructed phase
code is given by s

(k)
new = [1,−1, 1, 1, 1, 1, 1]⊤. The crossover

operation will be performed P − E times, after which we
obtain P − E new phase codes, forming a new set S

(k)
cross ∈

RN×(P−E).
Next, we randomly mutate the elements of S

(k)
cross. The

purpose is to explore the search space and introduce more
diversity to the algorithm. To be more specific, for each phase
code in S

(k)
cross, we mutate one element (from −1 to 1 or from

1 to −1) with probability pmuta (0 ≤ pmuta ≤ 1). Denoting by
S

(k)
muta the mutated S

(k)
cross, we concatenate it with the elite codes

of S(k), yielding S̃(k+1) =
[
S

(k)
muta,S

(k)
el

]
.

72

TABLE I
HYPERPARAMETERS OF GASEQ FOR PHASE CODE DISCOVERY

GA

Parameters Definitions
N = 59 Length of the binary phase code
K = 200 Number of generations in GA
P = 10000 Number of candidates in the population
E = 2000 Number of elites
M = 5 Number of competitors in a tournament selection

pmuta = 0.3 Mutation rate
pconv = 0.7 Probability for convergence prevention

Early-convergence prevention. The last step of one gener-
ation is early-convergence prevention. Notice that in the above
operations, a phase code in S(k) can appear in S(k+1) multiple
times, and the average number of appearance is proportional
to the fitness of the phase code. To prevent the algorithm
from being dominated by these “better” phase codes and early
stopping, we have to reduce the number of repeating phase
codes in the new generation.

The early-convergence prevention operates in the following
manner. Suppose that a phase code s appears in S(k+1) for
G times. For each appearance, we will decide independently
whether to keep or drop it. First, the first appearance is kept
to ensure that s appears at least once in S(k+1). Then, the
rest appearances will be kept with probability pconv, where
0 ≤ pconv ≤ 1, and dropped from S(k+1) otherwise. After the
above operations, we obtain a new population S(k+1)

left with the
number of phase codes less than P .

Finally, the (k + 1)-th generation of phase codes S(k+1)

is obtained by padding randomly initialized phase codes to
S(k+1)

left such that S(k+1) ∈ RN×P .

IV. NUMERICAL EXPERIMENTS

Given the GASeq algorithm described in Section III, this
section performs numeral experiments to discover new phase
codes for pulse compression radar with the MMF receiver.

A. Experimental setup and baselines

We adopt the same system setup as [13], [14] and the goal
is to discover a phase code of length N = 59 that maximizes
the SCR γ. The default hyper-parameter setting of our GASeq
is summarized in Table I. Specifically, the algorithm operates
for K generations and the population size is P = 10, 000. The
elite population size is set to E = 2000 and the number of
competitors in each tournament is M = 5. The mutation rate
is pmuta = 0.3 and the probability for convergence prevention
is pconv = 0.7.

There are three baselines: the Legendre sequence [5], Al-
phaSeq [14], and HpGAN [13]. Let N = 59, the Legendre
sequence is given by

sL =

+1 +1 −1 +1 +1 +1 −1 +1 −1 +1
−1 −1 +1 −1 −1 +1 +1 +1 −1 +1
+1 +1 +1 −1 −1 +1 +1 +1 +1 +1
−1 −1 −1 −1 −1 +1 +1 −1 −1 −1
−1 +1 −1 −1 −1 +1 +1 −1 +1 +1
−1 +1 −1 +1 −1 −1 −1 +1 −1

 ,

Generation

𝛾𝛾𝛾𝛾

Fig. 3. GASeq to discover a phase-coded sequence for pulse compression
radar versus sL, salpha, sHpGAN.

No. of visited states

𝛾𝛾𝛾𝛾

Fig. 4. Searching capability comparison of GA, AlphaSeq, and random search.

and γ(sL) ≈ 2.69; AlphaSeq is searched by DRL, giving

salpha =

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1
+1 +1 +1 +1 +1 +1 −1 −1 −1 −1
−1 −1 −1 −1 +1 +1 +1 −1 −1 +1
+1 −1 +1 +1 −1 +1 −1 −1 +1 −1
+1 −1 +1 −1 −1 +1 −1 +1 −1 +1
−1 +1 −1 +1 −1 +1 −1 +1 −1

 ,

and γ(salpha) ≈ 33.45; HpGAN is searched by GAN, giving

sHpGAN =

−1 +1 −1 +1 −1 +1 −1 +1 −1 +1
−1 +1 −1 +1 −1 +1 +1 −1 +1 −1
+1 −1 +1 −1 −1 +1 −1 +1 +1 +1
−1 +1 +1 −1 −1 −1 −1 +1 +1 +1
+1 +1 +1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 −1

 ,

and γ(sHpGAN) ≈ 45.16.

B. Main results

To ease reading, we first summarize our main results in
this subsection. Given the hyperparameters in Table I, Fig. 3
presents the improvement of γ over the course of evolution.
As can be seen, after 32 generations, GASeq converges to a
phase code

sGA =

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1
+1 +1 +1 +1 +1 +1 +1 −1 −1 −1
−1 −1 +1 +1 +1 −1 −1 +1 +1 +1
−1 +1 +1 −1 −1 +1 −1 −1 +1 −1
+1 −1 −1 +1 −1 +1 −1 +1 −1 +1
−1 +1 −1 +1 −1 +1 −1 +1 −1

 ,

73

Code length

𝛾𝛾𝛾𝛾

Fig. 5. Search for longer phase code using GASeq: the achieved SCR versus
code length.

the SCR of which is γ(sGA) = 50.84. Compared with sL,
salpha, and sHpGAN, sGA improves the SCR by 48.15, 17.39
and 5.68, respectively.

In addition, GASeq is a much more efficient search algo-
rithm than prior arts. Fig. 4 compares the evolution of γ as
a function of the number of visited states for GA, DRL, and
random search. As shown, GA discovers sGA after visiting
only 2.4 × 105 states. At such a small number of visited
states, the SCRs of the sequences discovered by AlphaSeq
and random search are less than 10.

Thanks to the efficiency and scalability of GASeq, we fur-
ther apply it to discover longer phase codes for N ∈ [60, 100]
and present the achieved SCR in Fig. 5. At a code length of
N = 100, for example, the best discovered sequence has an
SCR of 63.23. We emphasize that there is no proportional
relationship between SCR and the code length – as can be
seen from (4), with the increase in N , both the signal and
interference power increases and the ratio is undetermined.

With different code length, the number of visited states of
GASeq is shown in Fig. 6. When N = 100, GA discovers
sGA with an SCR of 63.23 after visiting 7.5× 105 states.

C. Impact of initialization, M , and E

There are a number of parameters to be determined in
GASeq. In this section, we study the impact of these parame-
ters and show how the default parameter settings are chosen.

In the initialization phase, the first generation of candidates
is randomly generated. In addition to that, we can insert
existing phase codes in the literature as seeds to generate
offspring. Fig. 7 compares the evolution of γ with different
seeds.

As can be seen, adding existing phase codes is actually
harmful to the evolution of GASeq. This is not surprising as
these “better” phase codes dominate the generation, and hence,
GASeq explores less compared with the case of pure random
initialization.

The second important parameter is the number of individ-
uals being selected in each tournament, i.e., M , because it

No. of visited states

𝛾𝛾𝛾𝛾

Fig. 6. Search for longer phase code using GASeq: the achieved SCR versus
the number of visited states.

Generation

𝛾𝛾𝛾𝛾

Fig. 7. Impact of different initialization schemes on GASeq.

directly determines the probability that each candidate goes to
the next generation, according to (8). With different M , Fig. 8
presents the performance of GASeq.

As shown, a large M often leads to suboptimal performance
in convergence. This is because the candidates with larger
fitness are more likely to go to the next generation if M is
large, and hence, the diversity of the population in the next
generation decreases. On the other hand, when M is small,
e.g., M = 2, GASeq can often converge to the same optimum,
but the convergence speed can be slow. Overall, setting M = 5
is a good choice for GASeq.

The final parameter is E, the size of the elite set. Suc-
cinctly speaking, the setting of E has a similar effect on the
performance of GASeq as M : a small elite size encourages
exploration while a large elite size encourages exploitation. As
shown in Fig. 9, E = 2000 is a proper setting as it leads to
the optimal phase code while ensuring fast convergence.

V. CONCLUSION

Designing phase codes with low aperiodic autocorrelations
is an important problem in pulse compression radar (PCR)
for sidelobe suppression, but is non-trivial due to the lack of
mathematical instruments, especially when used in conjunction

74

Generation

𝛾𝛾𝛾𝛾

Fig. 8. Impact of the number of individuals being selected in each tournament,
M , on the performance of GASeq.

Generation

𝛾𝛾𝛾𝛾

Fig. 9. Impact of the elite size E on the performance of GASeq.

with the mismatched filter (MMF) receiver to maximize the
signal-to-clutter ratio (SCR). To meet the challenge, this paper
put forth a genetic algorithm (GA) approach. Our specific
contributions and results are summarized as follows.

We developed GASeq, a GA for phase code discovery in
PCR with the MMF receiver. GASeq exhibits three main
advantages over existing deep learning (DL)-based phase
codes: 1) Superiority. GASeq discovered better phase codes
with higher SCR than the state of the art. 2) Efficiency. GASeq
converges much faster and visits significantly fewer states than
DL-based approaches to find a sequence with the same SCR.
3) Scalability. GASeq can be readily extended to search longer
phase codes, which thwarts DL-based schemes due to the high
complexity.

Moving forward, a straightforward extension of GASeq is
discovering non-binary (such as polyphase) phase codes to
further improve the estimation performance. To that end, an
enhancement on the GA is needed as the phase codes can
have continuous, as opposed to discrete, phase or amplitude.
A promising candidate for continuous-domain optimization is
the differential evolution algorithm and its variants.

REFERENCES

[1] E. C. Farnett, G. H. Stevens, and M. Skolnik, “Pulse compression radar,”
Radar handbook, vol. 2, pp. 10–11, 1990.

[2] M. Golay, “Sieves for low autocorrelation binary sequences,” IEEE
Trans. Inf. Theory, vol. 23, no. 1, pp. 43–51, 1977.

[3] D. R. Wehner, “High resolution radar,” Norwood, 1987.
[4] J. Tsao and B. D. Steinberg, “Reduction of sidelobe and speckle artifacts

in microwave imaging: The CLEAN technique,” IEEE Trans. Antennas
and Prop., vol. 36, no. 4, pp. 543–556, 1988.

[5] M. Golay, “The merit factor of Legendre sequences (corresp.),” IEEE
Trans. Inf. Theory, vol. 29, no. 6, pp. 934–936, 1983.

[6] J. Brest and B. Bošković, “A heuristic algorithm for a low autocorrelation
binary sequence problem with odd length and high merit factor,” IEEE
Access, vol. 6, pp. 4127–4134, 2018.

[7] J. Jedwab, “A survey of the merit factor problem for binary sequences,”
in Int. Conf. Sequences and Their Appl., 2004, pp. 30–55.

[8] H. Rohling, “Mismatched filter design for pulse compression,” in IEEE
Int. Conf. Radar, 1990.

[9] B. Zrnic, A. Zejak, A. Petrovic, and I. Simic, “Range sidelobe suppres-
sion for pulse compression radars utilizing modified RLS algorithm,” in
IEEE Int. Symp. Spread Spectrum Tech. Appl., vol. 3, 1998, pp. 1008–
1011.

[10] P. Stoica, J. Li, and M. Xue, “On binary probing signals and instrumental
variables receivers for radar,” IEEE Trans. Inf. Theory, vol. 54, no. 8,
pp. 3820–3825, 2008.

[11] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.

[12] Y. Shao, A. Rezaee, S. C. Liew, and V. W. S. Chan, “Significant sampling
for shortest path routing: A deep reinforcement learning solution,” IEEE
J. Sel. Areas Commun., vol. 38, no. 10, pp. 2234–2248, 2020.

[13] M. Zhang, Z. Zhou, L. Li, Z. Liu, M. Yang, and Y. Feng, “HpGAN:
Sequence search with generative adversarial networks,” IEEE Trans.
Neural Netw. Learning Syst., 2021.

[14] Y. Shao, S. C. Liew, and T. Wang, “AlphaSeq: Sequence discovery with
deep reinforcement learning,” IEEE Trans. Neural Netw. Learning Syst.,
vol. 31, no. 9, pp. 3319–3333, 2019.

[15] J. H. Holland, “Genetic algorithms,” Scientific American, vol. 267, no. 1,
pp. 66–73, 1992.

[16] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm:
past, present, and future,” Multimedia Tools and Applications, vol. 80,
no. 5, pp. 8091–8126, 2021.

[17] A. Lambora, K. Gupta, and K. Chopra, “Genetic algorithm – a literature
review,” in IEEE Int. conf. machine learning, big data, cloud and parallel
computing, 2019, pp. 380–384.

[18] D. Wang, H. Hu, and Z. Yang, “Improved genetic algorithm for the
configuration optimization of the subarrays in phased array radar,” in
IEEE Int. Congress Image and Signal Proc., BioMedical Engineering
and Inf. IEEE, 2016, pp. 930–934.

[19] C. Vasanelli, R. Batra, and C. Waldschmidt, “Optimization of a MIMO
radar antenna system for automotive applications,” in IEEE European
Conf. Antennas and Prop., 2017, pp. 1113–1117.

[20] M. A. Nasrabadi and M. H. Bastani, “A new approach for long low
autocorrelation binary sequence problem using genetic algorithm,” in
IEEE Int. Conf. Radar, 2006.

[21] E. P. C. Rao, G. Bommagani, and S. Singh, “Phase coded sequences
design for pulse compression radar,” Helix, vol. 12, no. 1, pp. 10–17,
2022.

[22] Y. Shao, D. Gündüz, and S. C. Liew, “Federated learning with mis-
aligned over-the-air computation,” IEEE Trans. Wireless Commun.,
vol. 21, no. 6, pp. 3951–3964, 2021.

[23] Y. Shao, S. C. Liew, and L. Lu, “Asynchronous physical-layer network
coding: symbol misalignment estimation and its effect on decoding,”
IEEE Trans. Wireless Commun., vol. 16, no. 10, pp. 6881–6894, 2017.

[24] Y. Shao, D. Gündüz, and S. C. Liew, “Bayesian over-the-air computa-
tion,” arXiv:2109.03780, 2022.

[25] B. L. Miller, D. E. Goldberg et al., “Genetic algorithms, tournament
selection, and the effects of noise,” Complex systems, vol. 9, no. 3, pp.
193–212, 1995.

75

