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Abstract—Hybrid beamformer design plays an important role
in millimeter wave multiple input multiple output systems. In this
paper, we propose a deep learning (DL) neural network for hybrid
precoders and combiners to improve spectral efficiency. With the
received signal and channel matrix as the input, the proposed DL
network estimates the beamformer matrix as output. The proposed
DL approach does not require prior knowledge such as angle
features and channel information. Thus, it provides improved
spectral efficiency compared to non-DL approaches.

Index Terms—Hybrid beamforming, millimeter wave, deep
learning

I. INTRODUCTION

Hybrid beamforming is one of the most essential topics
on the millimeter wave (mmWave) multiple input multiple
output (MIMO) systems being used in mobile systems [1],
[2]. Thus, research has to be done regarding a beamformer
with robust performance in a variety of scenarios. In other
words, beamforming techniques should be adaptable to as many
scenarios as possible that are changed by the evironmental
factors such as the position of transmitter/receiver, clutter
distribution, and beam steering angle. A lot of research has
been carried out to propose hybrid beamformer designs. For
example, a greedy-based approach [3] that uses the projection of
the residual matrix and orthogonal matching pursuit (OMP) was
proposed. These kinds of beamforming techniques select the
analog precoder and combiners using transmit and receive array
responses. These non deep learning (DL)-based algorithms
require the background knowledge of the direction of arrival
(DOA) and direction of departure (DOD) angle. The hybrid
beamformers are proposed to solve these kinds of minimization
problems and to estimate the beamforming matrix by extracting
phase features. However, the hybrid beamformer techniques
have some critical challenges such as the optimal solution and
the complexity problem.

To overcome the above challenges, many researchers pro-
posed the DL-based approaches. These techniques for the
hybrid beamforming have several advantages such as reducing
time for processing, higher performance, and low computational
complexity. Therefore, many researches are focused on the DL-
based techniques for the mmWave MIMO system such as DL-

based channel estimation [4], [5], [6], beamforming matrix,
DOA estimation, DOD estimation, and beam selection [7]. Long
et al. [7] proposed a sub-optimum algorithm that uses support
vector machines (SVMs) for beamforming matrix estimation
and antenna selection. Furthermore, hybrid beamforming using
the DL neural network was proposed by Huang et al. [8].
Their hybrid beamformer design is based on joint precoder and
combiner consideration for massive MIMO systems [3]. Huang
et al. [8] proposed a multi-layer perceptron-based network
architecture that does not extract the features from the input
data [9].

In this paper, we propose a DL-based approach to estimate
the channel, precoder, and combiner matrices. The neural net-
work architecture estimates the beamformer matrix at the output
by training datasets composed of received signals and channel
matrices. We generate dataset with channel matrices and noises
in several different scenarios for the robust performance of the
system. As a result, we can select the best input-output pairs
by using the estimated beamforming matrices. The DL-based
approach can provide higher performance of spectral efficiency
and less computation complexity. Furthermore, it does not
require any background information such as angle information
to achieve robustness in practical environmental scenarios.

After this introduction, the rest of this paper is organized
as follows: Section II introduces the mmWave transceiver
architecture with hybrid beamformers and channel model for
this research. The proposed DL approach and dataset genera-
tion process are discribed in Section III. Section IV provides
experimented simulation results. Finally, Section V presents the
conclusion of this paper.

II. SYSTEM MODEL

In this section, NT is the number of transmit antennas for
the multiuser mmWave MIMO communication system and NR

is the number of receive antenna in user side. NS is the
number of transmit data streams. The basestation (BS) has
NRF

T number of baseband beamformers FBB ∈ CN
RF×NT
T and

analog beamformers FRF ∈ CNT×NRF
T . The transmitted signal

can be represented as x = FRF FBBs where s ∈ CNS is the
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Fig. 1. Block diagram of mmWave transceiver architecture with hybrid beamformers.

NS size of complex symbol vector. We represent the received
signal at the receive NR antennas as

y =
√
ρHFRF FBBs + n (1)

where y ∈ CNR . n ∈ CNR represents the additive white
Gaussian noise (AWGN), ρ is the average received power and
H ∈ CNR×NT is the channel matrix [10] represented as

H = γ

Nc∑
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Npath∑
j=1
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the angle of arrivals (AOAs) and angle of departures (AODs)
respectively. ϕ is the angular parameter of azimuth angle and θ
is the elevation angle, respectively. αij is the complex channel
gain that is related to the ith clutter parameters Nc and the jth
multipath Npath. aR(Θ

(ij)
R ) and aT (Θ

(ij)
T ) are steering vectors

in size of NR×1 and NT ×1. They represent the array response
at the both sides of the system, respectively. The steering vector
aR(Θ

(ij)
R ) can be represented as

[
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where the position matrix pn = [xn, yn, zn]
T denotes the

nth receive antenna in the Cartesian coordinate system. The
position matrix in the spherical coordinate system is r(Θ(ij)

R ) =[
sin(ϕ

(ij)
R ) cos(θ

(ij)
R ), sin(ϕ

(ij)
R ) sin((θ

(ij)
R )), cos((θ

(ij)
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]T
.

The transmit steering vector aT (Θ
(ij)
T ) can be represented as

same as aR(Θ
(ij)
R ).

The received signal that is passed by analog combin-
ers and baseband combiners can be represented as ỹ =
WH

BBWH
RF y, i.e.,

ỹ =
√
ρWH

BBWH
RF HFRF FBBs + WH

BBWH
RF n (4)

where WRF ∈ CNR×NRF
R and WBB ∈ CNRF

R ×NS are the ana-
log combiner and the baseband combiner respectively. Finally,
we can represent the spectral efficiency [11] as

R = log2
(∣∣INS

+
ρ

NS
Λ−1

n WH
BBWH

RF HFRF FBB

× FH
BBFH

RF HHWH
RF WH

BB

∣∣) (5)

where Λn = σ2
nWH

BBWH
RF WRF WBB ∈ CNS×NS represents

the noise in the form of covariance matrix. Therefore, the
goal of this paper is to estimate the hybrid beamformers
FRF ,WRF ,FBB , and WRF that maximize the spectral effi-
ciency.

III. LEARNING-BASED HYBRID BEAMFORMER DESIGN

We propose a DL network for DL-based channel estimation
in hybrid beamformer design. In the data generation process,
we generate and label the training dataset. The final goal is
to estimate the beamforming matrices F and W using received
signal ỹ and channel matrix H. To train the proposed network,
we realize 100 different scenarios and generate the channel
matrices. For each realization, we also add noise to the dataset,
hence the signal-to-noise ratio level [12] is defined by

SNR = 20 log10

{∣∣[H]
i,j

∣∣2
σ2

} [
dB

]
(6)

where
[
H
]
i,j

denotes the channel matrix in the propagation path
of ith scatter and jth multipath. The input X1 of the first stage
is the received signal ỹ as follows:

[[
X1

]
:,:,1

]
=

∣∣[ỹ]
i,j
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[[

X1

]
:,:,2

]
= Re

([
ỹ
]
i,j

)
[[

X1

]
:,:,3

]
= Im

([
ỹ
]
i,j

)
(7)

As the size of X1 is NR × NT × 3,
[
X1

]
:,:,1

denotes the first
channel of input data X1. Given that the first stage network is
trained by the output y and the channel matrix Hin Re and Im
denote the real and imaginary part of the following complex
value.
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Fig. 2. Proposed network architecture for training dataset.

Fig. 3. Spectral efficiency comparison between proposed DL-based approach
and OMP algorithm.

In the second stage, our proposed network receives the output
of the first stage as input. The output label for the second stage
Z is

Z =
[
ZT
RF , ZT

BB

]T
(8)

ZRF =
[
vec{∠FRF}T , vec{∠WRF}T

]
(9)

ZBB =
[
vec{Re

(
FBB

)
}T , vec{Im

(
FBB

)
}T ,

vec{Re
(
WBB

)
}T , vec{Im

(
WBB

)
}T

]
(10)

and the hybrid beamformers FRF ,WRF ,FBB , and WRF are
the outputs. The proposed network is presented in Fig.2. The
network architecture has input size of X1 is NR × NT × 3.
It comprises the convolutional neural network layers and fully
connected layers. The pooling layers are also utlized after the
convolutional layers and the output layer is the regression. The
hyperparamete in each layer and unit are tuned and fixed so
that the spectral efficiency performance can be achieved.

To train the proposed network, we generate channel matrix,
received signal and additive noise in different scenarios as part

of the dataset so that the proposed DL network shows robustness
against the imperfect data and channel matrix.

IV. SIMULATION AND RESULT

We experimented the performance of the proposed DL-
based hybrid beamforming and compared it with the non DL-
based technique, the orthogonal matching pursuit [3]. It is
one of the non DL-based state-of-the-art techniques where the
analog precoder and combiners are selected from a transmit and
receive array responses. We use the uniform square arrays with
NR = NT = 24 antennas. The channel environment matrix
is modeled with Nc = 5, transmit and receive angles from
each side which is selected randomly in the range of angle[
− 60◦, 60◦

]
. The proposed network is trained and updated

with a learning rate of 0.005 and a mini-batch size of 500 for
200 epochs. To train the proposed network, the training dataset
is composed of 70% of generated data and 30% are selected as
the validation dataset.

The DL-based approach decides the analog beamformers
precisely by maximizing the spectral efficiency from the can-
didates of the precoder-combiner sets. The OMP has degrading
performance than the DL-based approach due to the decision
problem that is unable to select the best array responses.

V. CONCLUSION

In this paper, a DL-based hybrid beamforming was proposed
for the estimation of channel, precoder, and combiners matrix
for the mmWave MIMO systems. We showed that the proposed
learning approach provided higher spectral efficiency as com-
pared to the OMP algorithm. In addition, the pretrained DL-
based hybrid beamformer showed robust performance in the
different channel scenarios which are corrupted by noise.
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Heath, “Channel estimation and hybrid combining for mmwave: Phase
shifters or switches?” in 2015 Information Theory and Applications
Workshop (ITA). IEEE, 2015, pp. 90–97.

[11] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, “Channel
estimation and hybrid precoding for millimeter wave cellular systems,”
IEEE journal of selected topics in signal processing, vol. 8, no. 5, pp.
831–846, 2014.

[12] A. M. Elbir and K. V. Mishra, “Joint antenna selection and hybrid beam-
former design using unquantized and quantized deep learning networks,”
IEEE Transactions on Wireless Communications, vol. 19, no. 3, pp. 1677–
1688, 2019.

69


