Deep Learning-based Transceiver Design for
Pilotless Communication over Fading Channel with
one-bit ADC and Oversampling

Metasebia D. Gemeda, Min S. Han, Ameha T. Abebe, and Chung G. Kang
School of Electrical Engineering, Korea University
Seoul, Korea, Republic of
Email:{met4, als4585, ameha_tsegaye, ccgkang } @korea.ac.kr

Abstract—With the aim of addressing power consumption
issues for terahertz band wireless communication, this work
presents a deep learning-based solution for transceiver design
with 1-bit quantization and oversampling at the receiver, and
Faster-than-Nyquist transmission over fading channel. Specif-
ically, by implementing the transceiver using a convolutional
autoencoder, our work allows higher-order modulation transmis-
sion over one-bit fading channel without pilots. Transfer learning
from previously trained blocks over simple noisy channel is used
to minimize the probability of bit error and outperforms the
convolutional autoencoder at low oversampling rates. The bit-
error-rate gain offered at 20dB SNR by the transfer learning is
seen to be as high as half of one order at low oversampling rates
and to saturate as oversampling rate increases. Furthermore, by
allowing explicit phase synchronization, the autoencoder-based
transceiver with partial channel matching is able to approach
unquantized performance with 4dB gap in Rayleigh fading
environment.

Index  Terms—one-bit-quantization,
encoder, deep learning

oversampling, auto-

I. INTRODUCTION

As the wireless communication industry reaches for higher
data rate by transmission over terahertz band, the power effi-
ciency of current analog to digital converters (ADCs) proves
to be a problem. Moreover, it has been shown that power
consumption can be reduced by limiting the resolution of
the ADCs and relying on time domain resolution rather that
amplitude resolution. Hence, transmission schemes utilizing
one-bit ADC, which offers even better simplicity by remov-
ing all amplitude information, have been a subject of much
interest. However, employing one-bit ADC results in perfor-
mance degradation as the system is hindered from exploiting
high-modulation-order signaling and it consequently results in
reduced spectral efficiency (SE). In order to overcome this
loss in information rate, oversampling in time domain can be
implemented at the receiver along with Faster-than-Nyquist
(FTN) signaling at the transmitter.

Oversampling takes advantage of high correlation between
oversampled binary samples to allow zero crossing-based de-
tection for the 1-bit ADC system. FTN increases the temporal
resolution at the transmitter which allows to meet demand for
zero crossings on a finer grid. Furthermore, the zero crossing-
based detection redefines the achievable capacity in terms of
the amount of oversampling. As shown in the work in [1], the
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achievable capacity for one-bit noiseless channel is bounded
by Shamai’s limit which defines the maximum achievable SE
when oversampling a received signal Mp, times the Nyquist
rate as log, (Mg, + 1) bits per Nyquist Interval (7).

A zero crossing-based scheme to detect a high-modulation-
order signal requires the construction of a sequence which can
be distinguished after one-bit quantization and oversampling,
i.e., robust against quantization noise and inter-symbol inter-
ference (ISI). This results in expanded codewords and low
information rates that fail to reach near the defined upper
bound. On the other hand, FTN along with oversampling
results in high ISI that will make the recovery of message
bits challenging. Most of the conventional and deep learning
(DL)-based one-bit transceivers have been proposed with the
objective of improving either bit error rate (BER) or informa-
tion rate performance in noisy and/or fading channels. In order
to balance between robustness and higher information rates,
a combinatorial optimization problem has been defined in
section II. The work in [2] makes use of a conventional method
like run-length-limited (RLL) sequences to encode information
into the distance between consecutive 1’s for ideal one-bit
detection. However, the introduced channel memory for the
long sequences require receivers with maximum-likelihood
sequence detection to achieve predicted information rates.

One-bit transceiver designs using DL have been found to be
beneficial in [4-6] by offering a less complex decoding as well
an efficient way to reduce non-linearity introduced by the noisy
or faded one-bit channel. They also allow joint optimization of
the individual blocks of conventional communication systems
where other attempts to jointly optimize components revealed
intractable. In our previous work in [7], autoencoders (AEs)
were used to generate encoder-decoder pairs to perform as
the conventional of 1-bit transceivers over Additive White
Gaussian Noise (AWGN) channel. The DL solution was able
to achieve BER performance comparable to that of an end-to-
end channel AE without the constraint of 1-bit quantization.
The scheme also simplified the generalized problem for the
1-bit channel while revealing a straightforward BER and SE
trade-off. But as 1-bit quantization makes channel estimation
and equalization challenging, transceiver designs over AWGN
might not parallel real environment transmission. Quantization
of the pilots results in the need for a large number of pilots

APCC 2022



in each channel coherence interval and therefore having a
pilotless scheme is desirable. Therefore, our current work
focuses on extending the DL based transceiver for pilotless
transmission over fading channel.

This study proposes a scheme to allow pilotless transmission
over fading channel with one-bit quantization and oversam-
pling receiver by adopting DL methodologies. Specifically,
it utilizes convolutional AEs for end-to-end communication
with the main objective of learning the reconstruction task
for faded and quantized transmission. Furthermore, the work
aims to learn optimal joint error-correction and modulation as
well sequence construction suited for the one-bit quantization
and oversampling scenario for the best BER performance. The
jointly optimized block of neural network aims at producing
codewords with zero-crossing patterns that would be ideal
for recovery after one-bit quantization as well as particular
channel effects. Moreover, the parameters of the otherwise
compartmentalized blocks can be represented with a single
variable which allows us to not worry about many optimizable
variables in system design. On the receiver side, the end-to-
end training employed along with correlation property of con-
volutional layers have allowed joint optimization of channel
estimation, equalization, and decoding blocks.

The proposed DL solution enables one-bit quantization
along with oversampling and FTN channel to be operational
for modulation orders as high as 64-QAM over fading channel
without employing pilots. The use of increased oversampling
rates is found to boost the performance of our proposed one-
bit pilotless channel convolutional AE into an acceptable BER
range. Furthermore, this work portrays the constellation BER
gain offered by using Transfer Learning (TL) to improve
initialization of training. Finally, a phase-synchronized version
of AE with some pilots for partial channel estimation is
discussed.

The rest of the paper is organized as follows. Section II
presents a system model and problem formulation while the
Proposed DL-based model is detailed in Section III. The
simulation results are presented in Section IV and the paper
concludes in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Fig. 1 presents a comprehensive system model that includes
existing implementations performing 1-bit ADC and oversam-
pling at the receiver and FTN signaling at the transmitter [2-
6]. Let b € B® denote information bits to be transmitted,
which is then channel-encoded using with code rate r = s/k
whose output is given as ¢ € BF. Afterwards, the coded
bits ¢ is modulated with an order of M (bits/symbol) to
produce complex-modulated symbol d € CF/1°&2M In this
system model, the transmitted signal has to encode its in-
formation in the distance between zero crossings, allowing
good detection after the quantization at the receiver. This
sequence construction has a symbol-to-sequence mapping rate
of A € (0,1] that governs transmission rates. The mapping
can be expressed as CF/1°82M _ CN on the transmitter
side such that A = k/Nlog,M and it outputs the vector
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x = {x1,...,xn}. Finally, the DAC block transmits My,
symbols per one Nyquist interval 7' in an FTN manner by
utilizing a pulse shaping filter g(¢) like a root-raised cosine
(RRO) filter. The matched filter g(—t) on the receiver side will
filter the now noisy signal before temporal oversampling and
1-bit quantization is performed. Therefore, there will be the
same ISI filtering on both in-phase and quadrature branches
of the sequence of coded symbols.

For a P- path channel with impulse response of h(t) =

Z a;u (t)d(t — 7;) where each u;(¢) is a slowly time-varying,

Zero mean, unit variance Gaussian random process, and 7; and
a; are the delay and root-mean-square value of the magnitude
of i-th path, the received signal at the 1-bit ADC can be
represented as

P N -
V- @;ai“’“)g (’* B MT) Tn + z(t)) # g(—1)

1

where z(t) represents AWGN and x* is the convolution opera-
tor. We assume a slowly varying random process that does not
change with the duration of pulse, so we can drop time index
on u;(t). The ADC will temporally oversample this received
signal with a rate of Mg, with respect to Nyquist rate, where
the [-th sample can be represented as

nT
E;nzgauzg(‘MR Mpn )a:n+zl 2)
where § = g * g is the combined channel filter which

captures the effect of the transmitter filter, its matched receiver
filter and ISI due to oversampling and FTN. Additionally,
=2z ( Nl[T ) where Z = z * hfl. The oversampled real and

imaginary signals are then one-bit quantized by the ADC such

that
Q (Re(y1)) = sgn (Re(y1))
Q (Im (y1)) = sgn (Im (y;))

where sgn(x) 1if z > 0 and sgn (Re(y;)) -1
otherwise. The quantized signal is demodulated and decoded
to reconstruct message bits b. Since the 1-bit ADC can only
differentiate two levels in both real and imaginary dimensions,
the maximum modulation order that can be implemented at
the transmitter is up to M = 2. This consequently results
in a reduced SE and temporal oversampling can be applied
to allow information rates up to Shamai’s defined limit in
[1]. The achieved transmission rate in this FTN transmitter
for one-bit ADC can be given as rA My, log, M (bits/T) , as
depicted in Fig. 1. On a receiver side, the oversampling factor
Mp, determines the achievable rate of the scheme as given
by 2logy (Mg, + 1)(bits/T) [1]. This leads to the following
constraint:

rAMrloga M (bits/Tn) < 2logs(Mp, + 1) 4)

Therefore, our main objective is to design a system that can
approach the Shamai’s limit for a given Mg, by developing
a detailed transceiver structure and optimizing the values of
My, v, M, and A. In the course of formulating the design
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Fig. 1: Comprehensive system model for one-bit quantization
and oversampling communication schemes
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Fig. 2: A system model for the proposed autoencoder-based
transceiver with one-bit quantization and oversampling

problem, the SNR ~ , with its threshold y(**) to satisfy a target
BER, may constrain the SE maximization.

The BER is a function of Mr,, r, M, A, and Mg, as error
is incurred by quantization and ISI, in addition to AWGN with
the standard deviation o,. The variables should be optimized
between the need for higher SE and reliable communication.
Furthermore, practical hardware limits of one-bit ADC should
be considered by setting M o™ and My, as design
constraints. Consequently, the following problem formulation
comprehensively summarizes the practical design objectives
of 1-bit ADC given as in [2-6]:

(r*, A", My, M*) = argmax (rAMypgzlogyM)
(r,A,Mrpy,M)
rAMrp logoM < 2logy (Mg, + 1)

My, < M{), My, < M),

’Y(T‘,A,M, MTzaMRmaazagh) < ’y(th)

The common design objective for one-bit quantized transceiver
can be summarized by the above formulation. However, the
non-explicit representation of BER with respect to SNR and
other parameters makes the problem a non-trivial optimization
problem. A design offering an alternative option for optimiza-
tion is presented in the following section and is examined for
a particular fading channel.

s.t 5)

III. END-TO-END DL-BASED SOLUTION FOR ONE-BIT
QUANTIZATION AND OVERSAMPLING TRANSCEIVER

A. One-bit Channel Autoencoder

A channel AE can learn to communicate over any channel,
even for which no information-theoretically optimal scheme is
known. Therefore, the channel AE for end-to-end communica-
tion from the seminal work in [8] can be adapted for the one-
bit quantization and oversampling scheme, as shown in Fig.
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2, by fitting the comprehensive system described in Fig. 1. By
learning the optimal encoder-decoder pair, we can accurately
recover signals after one-bit quantization for higher modula-
tion transmission while jointly optimizing the different blocks
that make up the conventional system design. The use of these
neural network blocks as transmitter and receiver will make
one-bit quantization operational at low complexity, serving as
a framework for optimizing the transceiver performance.

The neural network encoder will project the input symbol
into a higher dimensional codeword such that it will be robust
against the channel fading, channel noise, and quantization
noise as well as ISI. During the training phase, the encoder
will learn an ideal modulation scheme and error correcting
code that are suited to the channel environment with one-bit
quantization, oversampling, and FTN. Importantly, it learns
the symbol-to-sequence mapping which encodes the infor-
mation into the distances between zero crossings and can
be recovered after channel effects and one-bit quantization
at the receiver. While the new transceiver cannot help with
the explicit solution to the optimization problem in (5) as
the BER as a function of A, M, and Mg, is not known
in any explicit form, the joint optimization of the first three
blocks that make up the transmitter will introduce better
performance and furthermore, a new way to perceive the
optimization problem. Compared to conventional schemes for
one-bit quantization and oversampling which require a huge
block-by-block optimization, however, the AE structure for
the one-bit channel, which was first discussed in our previous
work in [7], allows end-to-end optimization through back-
propagation. Such a simple optimization process allows us
the flexibility in determining the system parameters involved
in our problem formulation (3). We expect that the encoder
part of our proposed AE jointly optimizes channel coding,
modulation, and sequence generation by end-to-end training.
As a result, a parameter & is introduced, which is referred to as
the information-to-transmit-sequence mapping rate as defined
in [7]. It represents the mapping of the input information
bits to transmitted sequence after error correction, modulation,
and generation of sequence suited for one-bit quantization. It
corresponds to the rate of the proposed AE that is given as

K = rAlogy M (6)
Accordingly, the SE and problem formulation in (5) now can
be redefined for the proposed scheme as follows:
(k*, M%) = argmax (kMrpy)
(&, Mrg)

s.t. K,MTx S 210g2(MRx + 1)

Mry < M Mg, < MUP

Te > T 1 Rx > Rx
f)/(/f, My, Mgy, 02, Uh) < fy(th)
The parameter  in (6) implies that the AE’s efficient signal
packing capability in the presence of high ISI due to FTN with
one-bit quantization and oversampling allows the learning of
optimal parameters for the blocks that is represented by the
encoder. As shown in [7], the channel AE allows clear in-
herent trade-off between transmitting SE and BER for AWGN
channel by simplifying the general problem. But extending the
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DL solution to real environment would be difficult since both
received signal and pilots will be quantized before estimation,
which results in the need for a very large number of pilots.
Therefore, it is necessary to investigate the capability of
DL-based transceiver to effectively communicate faded and
quantized signals. The receiver in this scenario would have
to estimate channel from quantized signals which creates the
challenge of finding the correlation of the quantized signal
to encountered channel. This arduous task is performed using
supervised deep learning models in [5-6] where the schemes
rely on the quantized pilots at receiver to estimate channel and
then feedback is sent to transmitter for precoding the signal.

In this work, we tackle on transmission over fading channel
with one-bit quantization at the receiver with two different lev-
els of pilot-free transceiver designs. The first scheme attempts
to perform this transmission without any explicit pilots by
making use of only the proposed end-to-end training method
and convolutional layers. The pilots for full channel estimation
are only implicitly present and are learnt by the encoder and
decoder through back propagation. The AE has convolutional
layers to resolve the low correlation issue between quantized
signal and channel. Here, matched filtering is fully taken care
of by the neural network. Furthermore, oversampling on the
receiver side is critical in increasing the dimension reduced by
quantization. As transmission is pilotless, channel estimation
and equalization and corresponding performance on fading
channel is dependent of the oversampling which controls the
dimension of the received vector. The robustness of the neural
network-based transceiver allows the scheme to disregard the
high ISI that would be encountered by high oversampling
rates. Thus, utilizing the oversampling and FTN in the DL-
based transceiver is shown to improve BER performance in
the numerical results in Section IV.

The second proposed scheme makes use of partial channel
matching by using separate entity for phase synchronization
but allowing the AE-based transceiver to recover the signal
after the channel fading in amplitude, ISI and quantization.
The target transmission channel in terahertz band is populated
with large propagation losses and phase offsets. The prevailing
cause of demodulation performance loss for this range of
transmission is the phase offset, which cannot be adjusted once
the signal has been quantized [9]. Consequently, phase offset
needs to be corrected before sampling. In this second scheme,
an explicit phase estimation and compensation is assumed to
have been handled beforehand. Henceforth, the end-to-to-end
training as well as the convolutional layers implemented in
the second AE transceiver are aided by the partial matched
filtering for the signal reconstruction task.

B. Training of One-bit Channel Autoencoder

For both of the proposed transceiver, while training to map
the input vector to an embedding vector, the AE learns ideal
modulation, channel coding, and symbol-to-sequence map-
ping. The straightforward end-to-end communication with AE
incorporates the channel characteristics by the use of a non-
trainable layer between the auto-encoder and auto-decoder.
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Fig. 3: Network Architecture for proposed scheme (Convolu-
tional layer parameters are indicated as “kernel size/filters”)

This lambda layer introduces FTN, power normalization, fad-
ing channel, and oversampling as well single-bit quantization
as seen in Fig. 2. The effects of FTN and oversampling on the
transmitted vector as expressed in (2) is incorporated into an
ISI filtering layer. For the first scheme, the non-orthogonal
transmission can be represented by the effect on received
vector as follows:

y = HGx +2(® (8)
where G is a Toeplitz Gram matrix that represents the ISI, H
is the Toeplitz of the N-tap channel while z® denotes the
filtered and oversampled noise. The overall channel distortion
from all four non-trainable layers can be represented as

Ax) = Q (HGx+z(g)> )

where @ (-) quantizes each elements of the received and over-
sampled vector. Here, channel matching is not performed as in
the conventional system but rather rely on the robust encoding
and decoding of the AE. The transceiver is designed by the
principle of minimizing the reconstruction error of the output
from the input message vector, which is in parallel to design
goals of minimizing a transmission error. On the other hand,
the second transceiver design with partial channel matching
due to phase synchronization has the task of reconstructing a
signal with the following overall channel distortion:

AMx)=Q (ﬁGX—FZ(g))

where H is Toeplitz of the N-tap channel amplitude formed
from vector hh* representing channel with matched phase.
Here, hH is the Hermitian (conjugate) of channel vector. In
the course of training, both AEs will learn the encoder and
decoder parameters for the two hidden-layer functions, fe,.(-)
and fge.(+) , such that the difference between the input and the
predictedAvectors is Lninimized by some loss function, denoted
as L(b, b) where b = g (A (f (b))). Given the parameters
of O.ne and 0. for the encoder and decoder, respectively,
the hidden-layer function must be determined to minimize a

transmission error probability as follows:
( ) = argmin L(b,g |Ocrnc, Odec ) (11)

fencsfdec

In the proposed schemes, one-hot encoding is employed to
represent input bits bs as a one-hot 2°—dimensional vector

(10)

*
enc) Jdec



and there is SoftMax activation function at the decoder. The
network design will be the same for the two proposed schemes
which is a combination of convolutional and dense layers for
both encoder and decoder as shown in Fig 3. Furthermore,
batch normalization and Rectified Linear Unit (ReLu) acti-
vation are applied in the hidden layers of the encoder and
decoder. Non-differentiable lambda layers are applied between
encoder and decoder layers. Moreover, a loss function of

categorical cross-entropy L(b, B) ==> b loggi, is used,

where b; is the i-th element of b. The zt_r;ining of the AEs
described above poses a challenge as one-bit quantization
impedes gradient-based training due to resulting undefined
derivatives at zero values and derivatives equal to zero at
values different from zero. In our AE training, we make
use a hyperparameter ¢ in the one-bit quantization layer of
training phase such that the quantization function is adjusted
to soft quantization function Q(y;) = v;/(|yi| +¢) , where
e € [0, 1). This hyperparameter helps with avoiding a hard-
decoding effect of squeezing all the weights and parameters
into binary values. This means that while the neural network
is being trained in the soft quantization environment, it will
be tested in the hard one-bit quantization environment. The
hyperparameter ¢ must be tuned for optimal performance.
After the addition of the hyperparameter, the vanishing gra-
dient is still a possibility since the sigmoid activation effect
might occur at the soft-quantization layer. Thus, to combat
these effects, some methods like using ReLu activation as well
random weight initialization are applied in the hidden layers.
Furthermore, the breadth and width of layers are balanced to
have enough parameters for robust encoding and decoding
while employing a smaller number of parameters to avoid
the vanishing gradient. Training was performed using the
Adam optimizer with a learning rate of 0.001. The AE-based
transceiver was implemented using Keras with TensorFlow as
backend.

C. Transfer Learning (TL) - AWGN to Rayleigh Channel

Transfer learning attempts to improve on traditional ma-
chine learning by transferring knowledge learned in one or
more source tasks and using it to improve learning in a
related target task. The effectiveness of any transfer method
depends on the source task and how it is related to the
target. If the relationship is strong and the transfer method
can take advantage of it, the performance in the target task
can significantly improve through transfer learning [10]. In
the case of the proposed first scheme of AE transceiver,
it has the task of reconstructing transmitted bits after two
counts of distortion in the form of fading channel, one-bit
quantization and ISI without the aid of any pilots. Therefore,
the transmitter has to learn the right type of robustness for
all counts. While the end-to-end learning should be enough
for all properties to be learnt by the trained models, training
eventually is imperfect due to lack of enough datasets and
possible mismatches associated with hyperparameter tuning.
Henceforth, it would be advantageous to use method such as
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TL to improve the learning ability of the AE by transferring
a useful prior knowledge in another training to this particular
scenario.

In this work, we propose training the architecture described
above to minimize transmission error over a simple channel
like AWGN and then freezing the first two encoder layers
followed by fine-tuning of the AE to a fading channel such as
Rayleigh fading. The AWGN-trained encoder will transmit a

vector such that

_ ¢(AWGN)
X = fenc

(s wo, Bo, w1, B1, wa, B2) (12)
where (w;, ;) are the weights and biases of the i-th layer of
encoder. After the AE has been trained over Rayleigh fading
channel, the weights and biases for the decoder as well as
the last layer of the encoder will be fine-tuned to the new

channel characteristics such that the transmitted vector can be

described by
( (57 wO?BO?"Jl?ﬁl )7w/27ﬁ/2>(13)

x' = fe(fgyleigh)

where w}, 5] represent the encoder’s fine-tuned weights and
biases. This allows various parts of the transmitter to learn the
specific properties for zero crossing and precoding sequences
for one-bit quantization and fading, respectively. By employ-
ing the TL over the proposed AE scheme from a similarly
constructed AE with a related task, we can initialize weights
in our neural network for the best performance. The gain
observed due to using TL is discussed in the next section.

FAWGN)

IV. NUMERICAL RESULTS AND DISCUSSION

In our simulation, we consider an offline training of the
AE with the proposed layout. Then our numerical results are
obtained by Monte-Carlo simulation of the trained AE with
test datasets. A BER performance of the proposed transmission
scheme is evaluated for a fixed SE by varying different
oversampling and FTN rates as well as « values, under the
constraint of one-bit ADC receivers over fading channel. In
Fig 4, we can observe the performance of the pilotless AE-
based transceiver over Rayleigh multipath channel with L = 3
channel taps at oversampling and FTN rates of Mg, =
Mr, = 4,6, and 8. Their performance is lower-bounded by
the BER of 16-QAM modulation with hamming code over
similarly tapped Rayleigh Fading with unquantized reception
and full channel-matched filter. At low SNR, the constellation
gain and the error correcting capability are affected mainly
by high noise. Consequently, in the low SNR region, the
unquantized performance benchmark is outperformed by all
the other AE transceivers, which are all utilizing oversampling.
The oversampling adds a form of diversity gain in the low SNR
region. However, one-bit quantization scheme is challenging
for higher order modulation, especially over a fading channel.
The AE transceiver with explicit phase synchronization has
achieved the performance near to the lower bound of un-
quantized transmission with around 4dB gap at 104 BER
requirement.

While the proposed pilotless solutions have performance
much worse than the unquantized 16 QAM, the proposed
method has resulted in a similar waterfall slope with nearly



—— | 65-DAM: Unquantized —ie— Pilotless AE with TL [MR_- =6)
—a— AE with Phase Maiching IMR\ =8} = % =Pilotless AE l‘,\-1'h =)

AE with Phase Matching (M= 4) —&—Pilotless AE with TL (M, =§)
+— Pilotless AEwith TL (M, =4) - & ~Pilotless AE (M, =§)
+ = Pilotless AE (M =4)

Bt

Xl = %
=BT Bah ST R Rt |
mlll * 4 *

3L

1w ' L L s L
25 30 as 40 45

SNR(dB)

Fig. 4: BER performance with 16-QAM and Rayleigh fading
channel

107! - |

—eo—Pilotless 1-bit AE with TL (M, =4)
- @ - Pilotless 1-bit AE lMsz‘”
—— Pilotless | bit AE with TL !'MRx=8)
- % - Pilotless 1-bit AE (MR.\=8}

1073
2 4

LogI M

Fig. 5: BER gain due to transfer learning at SNR = 20dB

fixed SNR loss to the lower bound, which was not previously
viable. At lower oversampling rate of Mp, = 4 or 6, the
AE-based transceiver is unable to reconstruct the faded and
quantized signals. As the oversampling and FTN rate reaches
to Mp, = Mg, = 8, the AE-based transceiver achieves the
performance closest to the unquantized performance bench-
mark. Additionally, it can be observed that using TL over
the proposed pilotless channel AE improves training and
allows transmission with low oversampling rates to have BER
performance close to that of higher oversampling rates. In fact,
it is observed that all three cases for TL with Mg, = 4,6 and
8 achieve a similar performance, close to each other. The gain
due to TL becomes minimal in higher oversampling rate due
to the fact that the oversampling is able to capture the data
distorted by one-bit quantization and the improved training
offered by TL can no longer enhance the BER performance.

This constellation gain in BER in the higher SNR region is
examined in the results in Fig 5. Here, at SNR = 20dB, the
gain from TL is shown as the BER at different oversampling
Mp, = 4 is compared to that with Mp, = 8 for different
modulation levels. At 16-QAM and 64-QAM, we can see that
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TL offers a significant BER gain for the lower rate of Mg,
4, while showing litter performance gain at Mp, = 8.

V. CONCLUSION

The current work aims at enhancing power efficiency in the
terahertz communication systems by enabling high modulation
transmission over fading channel with one-bit quantization and
oversampling at the receiver and FTN at the transmitter. A
deep learning (DL) solution is proposed to simplify and opti-
mize the transceiver design. The implementation of the current
solution has been shown to have made one-bit quantization
and oversampling scheme operational enough to have an ac-
ceptable BER performance approaching to that of unquantized
one in Rayleigh fading channel. Transfer learning is utilized
to improve the BER performance at low oversampling rates.
We can observe that while oversampling increases the input
dimension for one-bit channel communication, it is the robust
encoding offered by DL-based approaches that allow effective
use of input dimension. As a future work, the current scheme
can be extended to multiple antenna scenarios in order to
explore new dimensions for further improvement.
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