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Abstract—Achieving communication intelligence with a low
computational cost is necessary for wireless sensor networks for
the drone transportation system. This work proposed a novel
localization system with low computational and time efficiency
that uses an unmanned aerial vehicle (UAV) as anchor node
and lightweight neural networks to evaluate the UAV position
information. The scheme takes advantage of the capabilities of
artificial intelligence models. Simulation results indicate that the
proposed scheme displayed a good performance with the least
localization error of 1.75, least training time of 0.0032s, and
testing time of 0.00039s without requiring GPS when compared
to other algorithms and previous schemes.

Index Terms—communication intelligence, drone transporta-
tion, edge network, 6G, UAY, wireless sensor networks

I. INTRODUCTION

HE critical application of communication intelligence (CI)

for self-sustaining networks (SSN) in 6G requires high-
reliable, low latency, security-driven, and scalable artificial in-
telligence (AI) algorithms, with reliable network infrastructure
that integrates unmanned aerial vehicle (UAV)-ground network
nodes. Without this in place, the acceleration of the use of
drones to transport goods and services, otherwise called a
drone transport system (DTS), will be jeopardized [1]. Deep
learning (DL) algorithms enable devices connected to wireless
communication systems (WSNs) to dynamically and intuitively
monitor their environment by exploiting multifaceted data fea-
tures to learn, predict, and adapt to environmental stimuli such
as wireless channel dynamics and mobility patterns, traffic,
network composition, etc.

WSN also called edge network (EN) is an interconnection
of sensor nodes to track distinct conditions in a particular
space/surrounding. Each node has low-complexity computation
units that enable it to carry out simple repetitive tasks like
collecting data from its immediate environment and dissemi-
nating it through a wireless channel to its destination. As a
distributed information technology model, edge networks allow
client data to be processed at the boundary of the network,
close to its source. Hence, each sensor node can communicate
its information with other nodes in the same network to expand
the scope of the coverage area being monitored and/or boost
the decision-making capability of the edge network as shown
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in Fig. 1. Therefore, the decision is to establish the best action
to react to when certain events occur in the network. To
achieve this, useful meaning needs to be extracted from the
information sent by the nodes and the transmitter with the help
of a knowledge base. This is the main objective of semantic
communication [2].

To localize the position of a node in a communication
network, the most adopted solution is the global positioning
system (GPS). However, utilizing GPS increases the deploy-
ment cost of communication nodes and is unsuitable for several
applications. Hence, to replace GPS usage for all the sensor
nodes in the network, a localization algorithm for WSN and/or
EN is prime in reducing communication node deployment
costs. With semantic communication and intelligent connected
unmanned aerial vehicles (IC-UAVs), computational costs can
be drastically minimized.
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Fig. 1. Communication between UAV and Ground sensor nodes

Therefore, the integration of unmanned aerial vehicles (UAV)
into EN technology can improve the performance of commu-
nication protocols, since the mobility of UAVs in the airspace
easily establishes connections with neighboring nodes in the
same network shown in Fig. 1. Previous research on UAV-based
sensor node localization systems was proposed by authors [3]—
[6]. These approaches used deep learning neural networks
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(DL). However, the application of DL-based approaches on
UAVs for on-the-fly deployment and decision making is usually
restricted by its limited power sources, battery capacity, and on-
board processing capabilities. Therefore, the continuous rein-
vention of computationally efficient, communication intelligent,
and hardware deployable DL solutions for UAVs is due to its
enormous benefits for dynamic aerial communication in the 5G
and 6G networks [7].

In this paper, a novel Simple Integrated Multi-layer Neural
Network (SimNet) for edge networks with minimal computa-
tional complexity and a time-efficient node localization system
is proposed based on feed-forward shallow neural network
architecture. By deploying UAVs as anchor nodes, high-quality
beacon signals can be transmitted freely and processed by
unknown nodes without undue interference from ground ob-
stacles as the UAVs can move freely in the airspace with a
low-computational resource.

Therefore, this study was designed to achieve the specific
objective of developing a time-efficient sensor node localization
scheme with minimal resource usage for intelligent connec-
tivity leveraging the flexibility of UAVs and the capabilities
of artificial intelligence. This paper is organized as follows.
Section II for Problem formulation; Section III highlights the
results and performance evaluation; and Section IV concludes
the paper.

II. PROBLEM FORMULATION

The localization scheme as seen in Fig. 1 divides the deploy-
ment of UAV into smaller blocks. D; and D5 UAVs serve as
anchor nodes for broadcasting beacon signals to neighboring
nodes. However, the UAVs can only provide information to
sensor nodes within its transmission range; Sy, Sa,: S3, S4 or
coverage radius, ;. The value of r; depends on the transmission
angle of the UAV’s antenna, 6;, and the height of the UAV, dj,.
Thus, D and D5 can only transmit beacon signals to 4 sensor
nodes at a time, but with a change in movement, it can cover
the other 3 nodes; S5, Sg, and S;. Specific sensor nodes 51,
So within 7 at a time ¢ are considered connected states that
serve as input characteristics for training the neural network.
We assumed that the deployed UAV has two antennae (left and
right) to send two signals simultaneously to the sensor nodes
in the localization block that is denoted by, bs, ...to b,,_1.

A. Data Preprocessing

The distinct position of a sensor node is derived from the
left (R~) and right (RT) antenna’s received signal strength
indicator (RSSI) values which contain the signal properties
of the connected beacon signals from the anchor node. These
values, I?; and Rj for maximum connected states are stored
in a repository and subsequently fed into the proposed neural
network. To extract relevant features from the saved data;
maximum RSSI (R;,), number of connected states (1;), mean
(p) and the standard deviation (o) are used.

To derive R, value; it is the highest value of RSSI R; from
a series of specific R; and R;” values expressed as:

= Ry = maz(R;), €))

where R; is the matrix of observed RSSI values.

The mean, p is a statistical tool that measures the central
tendency of a given distribution. It is defined by the average
number of the features extracted from the saved data. It is
computed as;

nyg—1
= Mean(u) = 72’:0 (Ri), 2)
Nt
where n; = total number of connection states.

o is a measure of the variability or dispersion of a given set

of values mathematically expressed as:

Sy (B — )

= Standard deviation(c) = 1
ny—

3)
A low o value indicates that the set of values is close to the
expected value p. Finally, the number of connected states, n; is
the last data feature that represents the established connection
between the sensor node and the anchor node (UAV). The rule
is; that given that the n; value for ;" is different from R?‘, the
greater value is chosen as the data feature. With this process,
a matrix of extracted data features is generated for the training
of neural networks. In all, there are seven features comprising
three u, Ry, and o for the right and left antennas. This forms
the total sample size for several generated values for model
training and testing.

B. Proposed SimNet Architecture

SimNet architecture is a simple neural network with a single
hidden layer, as seen in Fig. 2.

Unlike previous DL-UAV localization approaches, SimNet
adopts the shallow learning technique. Mathematically, it is
summarized as;

. w; X T + b)) = 2,
;wzn( J ) J (4)

j = 1, ceey Nty

where n; = total training samples; v} = output weights vector
connecting hidden layer to the output layer; n(e) = the hidden
nodes activation function; w; = weights of vector connecting
input and the hidden layer; b; = hidden nodes bias value, z; =
output layer of the network. Two indexes, ¢ and j representing
specific hidden node index and specific training sample index
respectively are used to model the system. To convert a node’s
input signal to an output signal, as well as ensure non-linearity
of the network, a hard limit activation function is integrated.

To train SimNet, each input value fed into the neural
network is multiplied by its weights (w; X x;). This is then
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Fig. 2. SimNet Structure for pose estimation of sensor nodes

summed with the hidden nodes bias (b;) value. The resultant
becomes the input for the hard-limit activation function. Since
the model is a supervised machine learning model, we set the
output layer to the same target output. The log shadowing path
loss model is used to calculate the RSSI value as summarized
in equation (5):

g(ar) = 50 + 10-7T~10910(%) + ¢7u

o (3)
Ry = Rig) + (Ug) — £(92)),

where £(0,,) = path loss at a defined distance, 0,.; &y = reference
distance 0y path loss; m = path loss co-efficient; ¢,, = noise
from Gaussian distribution with zero p and o value; R(t) =
RSSI value; R(g) = sensor node antenna/receiver gain; and U(g)
= gain from antenna / transmitter UAV. Hence, the value of path
loss, £(0,) is dependent on the environmental parameters; &,
mw, and ¢, while the values of R(g) and U(g) are constant.
Simulation is performed in Python environment on a Windows
10 operating system with the hardware configuration of In-
tel(R) Core(TM) 15-8500 CPU @ 3.00GHz, 6Core(s), NVIDIA
GeForce GT 1030, GPU CUDA:0 (Tesla K80, 11441.1875MB)
and 36GB RAM.

III. RESULT AND PERFORMANCE EVALUATION

The results of the simulation and performance evaluation are
presented forthwith as summarized in Table I, Table II, Fig. 3,
Fig. 4, and Fig. 5 for training and testing of the proposed model
with similar localization schemes; Support Vector Machine
(SVM) and Backpropagation (BP) respectively. The results in
Table I show that SimNet achieved better performance than the

TABLE I
PERFORMANCE OF MODELS

Time (s)/Model Proposed (SimNet) SVM BP
Training Time 0.00320 0.191 0.152
Testing Time 0.00039 0.00099 0.0164

SVM and BP learning algorithms with a faster training time
value of 0.00320s and a testing time of 0.00039s.
Furthermore, the localization errors of the models for both
the training and testing stage, as seen in Fig. 3 show the per-
formance of each model indicated by the regression lines. The
red, blue, and black dots are the localization errors during the
training and testing of the SimNet, SVM, and BP algorithms.
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Fig. 3. Performance of learning algorithms showing (a) Graph of training
errors and (b) Graph of testing errors

The results in Fig. 3 indicate that SimNet outperforms BP
and SVM with the least localization training errors and testing
errors and faster time, as indicated by the blue regression line
and dots, respectively.

Also, to examine the effect of the hard-limit activation func-
tion on the proposed model, the result in Fig. 4 compares its
performance with the Sigmoid and sine function respectively.
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Fig. 4. SimNet performance showing (a) Graph of Training errors with
different activation functions, (b) Graph of Testing errors with different
activation functions

From Fig. 4(a), the results indicate that at the training stage,
the hard-limit activation function had better performance. But
at the testing stage, Fig. 4(a), the hard-limit activation function
performance is poor.

Furthermore, to evaluate the reliability of the proposed
model, the results in Fig. 5 show the performance of SimNet
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at different hidden nodes. The results of Fig. 5 show that the
increase in the number of hidden nodes does not translate into
an increase in the accuracy of SimNet’s localization. Hence,
the increase in the number of hidden nodes is immaterial
in enhancing the localization accuracy performance of the
proposed model. Thus, a low computational complexity is
achieved with a faster time.
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Fig. 5. (a)Performance of Proposed learning algorithm showing (a) Graph

of Training errors of different hidden nodes (b) Graph of Testing errors of
different number of hidden nodes

Finally, the results in Table II compare the performance of
the proposed model with similar localization approaches based
on existing works.

TABLE II
EVALUATION WITH SIMILAR LOCALIZATION SYSTEMS

SimNet [8] [9]
Anchor node’s type UAV Ground node  Ground node
Total anchor nodes 2 100 10
Deployment Fixed Random Random
Localization error (m) 1.7537 3.6 6.45
GPS Not Needed Needed Needed

In comparing the proposed model’s performance with ex-
isting works, the result in Table II shows that SimNet is a
better sensor node localization scheme with the least local-
ization error of 1.75 without requiring GPS. These results
undoubtedly, affirm SimNet as a low-computational and time-
efficient UAV-integrated sensor nodes localization scheme for
achieving communication intelligence in 6G networks where
speed, smartness, and security are in tandem with intelligent
connectivity in promoting drone transportation and other inno-
vative 6G-enabled technologies.

IV. CONCLUSION

The article proposed a novel sensor node localization ap-
proach using neural networks and UAVs to achieve commu-

nication intelligence, low computational cost, and high-quality
beacon signal receptivity. The result indicates that the proposed
model achieved the stated peculiarities. However, there are
some shortcomings. Future work will tend to expand the model
to increase connected sensor nodes in the edge network and
improve its performance for wide coverage.
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