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Abstract—A robust perception system is critical in autonomous
driving. It is responsible for object detection, classification, and
ranging under challenging circumstances. Camera and lidar
sensors provide complementary information, and by combining
these two modalities, we can increase the robustness and accu-
racy of the overall perception system. This paper presents the
implementation of sensor fusion based perception using camera
images and lidar point clouds for object detection and ranging in
a real-time driving environment. The experiment results obtained
with our test vehicle demonstrate that the perception of vehicle
surroundings can be more effectively achieved by means of
camera-lidar sensor fusion compared with using a single type
of sensor.

Index Terms—camera, lidar, sensor fusion, perception, object
detection, ranging, autonomous driving

I. INTRODUCTION

Object detection by a single type of sensor is not sufficient
to ensure safety for automated driving systems. Every sensor
has its advantages and shortcomings. Identification of color,
shape, and type of obstacles is relatively easy with cameras
compared with other sensors. But generally, cameras cannot
capture depth or range information. Methods are available to
recover 3D information from camera images. However, this is
the fundamental problem with the cameras. In contrast, lidars
can depict the 3D surroundings of the vehicle more accurately,
often with a much larger field of view.

The lidar is less prone to weather-related conditions and
is not affected by ambient light variations compared with the
camera. Lidar data contain range information, but lidar-based
detection of objects is not straightforward. First, the 3D lidar
points that correspond to objects are not as dense as how the
objects appear in the camera image. Second, the variation
of geometric shapes is much higher. The accuracy of the
geometric shape determined based on lidar measurements can
largely vary for objects located at different distances because
the density of the 3D points decreases as the distance to the
object increases. 3D object detection is very challenging in
such cases. Considering aforementioned advantages and dis-
advantages of each type of sensor, it is highly beneficial to use
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Fig. 1. Sensor configuration for the multimodal object detection and ranging.

both sensors together for the high level of perception accuracy
and robustness that is required for autonomous driving.

In this paper, the implementation of multimodal object
detection and ranging in a real-time driving environment is
presented. The camera-lidar calibration process as well as the
sensor fusion based approach for perception are described.

II. CAMERA-LIDAR CALIBRATION

The object detection and ranging setup consists of a 128-
channel lidar (Ouster OS1-128) and a camera (Logitech C922).
The camera and lidar sensors are mounted on the roof rack
of the test vehicle as shown in Fig. 1. The camera-lidar
calibration is the process of estimating the relative position
and orientation of one sensor with respect to the other, which
yields calibration parameters that can be used to transform the
sensor measurement data into one unified coordinate system.

To estimate the rotation and translation between the camera
and lidar, optical and geometrical characteristics of the camera
such as focal length, principal point, and distortion coefficient
are required. These characteristics are attributed to camera
intrinsics and can be estimated by using a camera intrinsic
calibration method. We used Zhang’s method [1] in which a
checkerboard target is used to estimate a set of feature points.
These feature points are then related at different view points
to estimate the intrinsic matrix. Once the intrinsic matrix is
obtained, the extrinsic parameters of the camera and lidar
are acquired by using the perspective-n-point (PnP) algorithm.
The PnP algorithm minimizes the reprojection error between
the 3D lidar points and their corresponding points in the 2D
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Fig. 2. Projection of the 3D lidar points on the 2D camera image.

camera image to estimate the pose. The 2D-3D corresponding
points were carefully selected based on the reflectivity map
of the lidar measurements from multiple planer checkerboard
targets. We used multiple targets at different locations because
higher calibration accuracy can be achieved compared with
using a single plane [2]. Fig. 2 shows the 3D lidar points
mapped onto their corresponding 2D image pixels using the
transformation matrix acquired by the aforementioned camera-
lidar calibration method.

ITT. OBJECT DETECTION AND RANGING

The camera and lidar fusion steps for the multimodal object
detection and ranging approach described in this paper are
illustrated in Fig. 3. For object detection based on camera im-
ages, we used the YOLOV3 object detector [3], which provides
high real-time performance because it does not require a region
proposal network and directly regresses to detect objects. For
3D object detection based on lidar measurements, we used
PointPillars [4], which is based on the PointNet [5] encoder
and extracts local and global features from the 3D point clouds.
PointPillars converts the 3D points into pillar representation
hence there is no need to perform vertical binning that is
required in other representations such as voxels. Using the
calibration parameters, we transformed the data obtained from
two different sensors into one coordinate system by projecting
the point clouds onto the images.

The Robot Operating System (ROS) and Autoware [6]
were utilized for the implementation of the multimodal object
detection and ranging system. For our experiment conducted
in real-time driving conditions, we used a computer equipped
with Intel Core 19-9900K CPU, Nvidia Titan RTX, and 32 GB
of memory. For the purpose of the preliminary performance
evaluation, the weights pretrained with the Microsoft COCO
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Fig. 3. Flow diagram of the multimodal object detection and ranging

dataset [7] were used for YOLOv3 (with Darknet-53 as the
backbone network), and the weights pretrained on the KITTI
dataset [8] were used for PointPillars. The experiment result
as shown in Fig. 4 illustrates successful detection and ranging
based on the sensor fusion approach described in this paper.
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Fig. 4. Experiment result of object detection and ranging.

IV. CONCLUSION

In this paper, we presented the implementation of the
multimodal object detection and ranging system for real-time
perception of the driving environment. The camera and lidar
sensors were carefully calibrated so that the 3D lidar points
can be accurately projected on the 2D camera image. The
results from the preliminary driving tests demonstrated that
the camera-lidar fusion approach enables accurate and reliable
detection and ranging and that the two sensors effectively
complement one another. Our future work will include op-
timization of the detection models and training on larger
datasets. We also plan to use early fusion techniques to
reconstruct the pixel-wise depth from sparse lidar points and
dense 2D images. Additionally, we will extend this study to
cooperative perception via vehicular wireless communications.
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