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Abstract—Autonomous vehicles are the future intelligent vehi-
cles, which are expected to reduce the number of human drivers,
improve efficiency, avoid collisions, and become the ideal city
vehicles of the future. To achieve this goal, vehicle manufacturers
have started to work in this field to harness the potential and
solve current challenges to achieve the desired results. In this
sense, the first challenge is transforming conventional vehicles
into autonomous ones that meet users’ expectations. The evolu-
tion of conventional vehicles into autonomous vehicles includes
the adoption and improvement of different technologies and
computer algorithms. The essential task affecting the autonomous
vehicle’s performance is its localization, apart from perception,
path planning, and control, and the accuracy and efficiency of
localization play a crucial role in autonomous driving. In this
paper, we describe the implementation of map-based localiza-
tion using point cloud matching for autonomous vehicles. The
Robot Operating System (ROS) along with Autoware, which
is an open-source software platform for autonomous vehicles,
are utilized for the implementation of the vehicle localization
system presented in this paper. Point cloud maps are generated
based on 3D lidar points, and a normal distributions transform
(NDT) matching algorithm is used for localizing the test vehicle
through matching real-time lidar measurements with the pre-
built point cloud maps. The experiment results show that the
map-based localization system using 3D lidar scans enables real-
time localization performance that is sufficiently accurate and
efficient for autonomous driving in a campus environment. The
paper comprises the methods used for point cloud map generation
and vehicle localization as well as the step-by-step procedure for
the implementation with a ROS-based system for the purpose of
autonomous driving.

Index Terms—localization, map generation, map matching,
point cloud data, Autoware, normal distributions transform
(NDT), autonomous driving

I. INTRODUCTION

Vehicle localization is crucial for autonomous driving, mak-
ing it possible to accurately and efficiently track the vehicle
location as well as orientation with respect to the reference
frame. Without highly accurate and reliable localization, it is
impossible to have autonomous vehicles safely drive them-
selves on the road with confidence. Localization methods
for autonomous vehicles can be categorized into three types:
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global localization [1], absolute localization [2], and relative
localization [3].

In global localization, the localization system uses the in-
formation from the global navigation satellite system (GNSS),
including the latitude, longitude, altitude/elevation, and head-
ing information. The primary sources in the GNSS-based
localization system are the Global Positioning System (GPS),
BeiDou Navigation Satellite System (BDS), GLONASS, and
Galileo. Real-time kinematic positioning (RTK), precise point
positioning (PPP), and GNSS/inertial navigation system (INS)
are the three primary accurate positioning methods for GNSS-
based vehicle localization at present. However, for its optimal
localization performance, the GNSS-based localization system
requires an unobstructed view of the sky, which is difficult to
achieve in urban driving environments.

In the case of absolute localization, the localization system
estimates the vehicle’s position and orientation relative to the
local features or landmarks from the map. The vehicle is
localized by estimating the location of the best possible match
between online measurements and pre-built maps. Matching
algorithms such as the perfect match (PM) [4], normal distri-
butions transform (NDT) [5], and iterative closest point (ICP)
[6] are involved in the localization process. Sensors such as
lidars and cameras can be utilized for map-based localization
approaches including point cloud matching and landmark
search [7]. Creating accurate high-resolution maps for this type
of localization can be challenging, and the matching error and
process time from localization adversely affect the localization
performance.

In the case of relative localization, the localization system
estimates the vehicle location relative to the arbitrary origin
(e.g., the start location). The vehicle location is estimated
within the local map that is dynamically built, and the sensor
measurements are integrated over time. The most common
algorithms for this localization approach are simultaneous
localization and mapping (SLAM) [8] and lidar odometry
and mapping (LOAM) [9]. For these localization methods,
measurements from various sensors such as inertial measure-
ment units (IMUs), wheel encoders, cameras, and lidars can
be used. IMUs measure acceleration and yaw rate as well
as roll, pitch, and yaw, and based on these measurements
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it is possible to estimate the relative vehicle position and
orientation. Wheel encoders measure individual wheel rotation
speed. Camera and lidar sensors provide information about the
vehicle’s surroundings from which we can compute the relative
movement from frame to frame. The fusion localizer uses the
results from multiple types of sensors and estimates the vehicle
location and orientation. One of the notable challenges of
relative localization is drift error accumulation which reduces
the localization performance.

Autonomous driving systems generally require a centimeter-
level localization accuracy, and the use of lidar for local-
ization is one of the most appropriate solutions considering
its capability of capturing 3D information about the road
geometry and driving environment with a high precision [10].
The vehicle localization system described in this paper is
based on the absolute localization that employs a map-based
localization method using 3D lidar scans. The experiment
setup includes a lidar sensor that is mounted on top of our
test vehicle. We used the Robot Operating System (ROS)
[11] along with Autoware open source software [12] for the
implementation of the vehicle localization system in a real-
time driving environment. ROS is an open-source middleware
that is often used in automation and robotics. ROS employs
a graph architecture where multiple software modules called
nodes exchange messages by publishing and subscribing to
software buses called topics. ROS makes it possible to es-
tablish connection between various modules developed for
autonomous driving. The transform library for ROS, which is
known as the tf library, is used to manage coordinate frames
and transformations [13]. We also discuss the process of the
NDT scan matching method and describe the steps involved
in point cloud map generation as well as vehicle localization
with Autoware. Finally, we present the map generation results
obtained in a university campus environment along with the
vehicle localization results acquired in real-time driving con-
ditions.

The rest of the paper is organized as follows. Section
II discusses the related work on vehicle localization in au-
tonomous driving systems. In Section III, we describe the
vehicle localization architecture along with point cloud map
generation and vehicle localization implementations. Section
IV discusses the experiment results, and Section V concludes
this paper with future research directions.

II. RELATED WORK

Localization and mapping in autonomous driving systems
can be achieved in different ways, including absolute posi-
tioning sensors [14], odometry/dead reckoning [15], GNSS-
IMU fusion [16], SLAM [17], and map-based localization
[18]. This paper mainly focuses on map-based localization
approaches, which can be divided into landmark search based
localization [19] and point cloud matching based localization
[20], [21]. Among these approaches, the point cloud matching
based method that uses 3D lidar scans is employed for the
vehicle localization system described in this paper.

Many localization approaches have been proposed in the
literature [7], [22], [23], which can be categorized into
sensor-based localization techniques [24], cooperative local-
ization techniques [25], and data-fusion-based techniques
[26]. In sensor-based localization techniques, the system uses
GNSS/IMU, camera, radar, lidar, and ultrasonic sensors. How-
ever, the installation cost and computational complexity of
the sensor data make these systems challenging for real-time
vehicle localization. In cooperative localization techniques,
the system uses wireless communication technologies such as
Wi-Fi, cellular, and ultra-wideband (UWB) for the purpose
of localization [22]. Cooperative localization techniques can
be mainly divided into vehicle-to-vehicle localization (V2V)
and vehicle-to-infrastructure localization (V2I). The latency,
packet loss, channel congestion, network security, and de-
pendence on connectivity are among the main challenges
of the cooperative localization approaches. Data-fusion-based
localization techniques include multisensor data fusion and
map-based data fusion [23]. Multisensor data fusion can be
employed to fuse on-board sensor data with GNSS data to
improve the localization performance [27]. In the case of map-
based data fusion, vehicle localization is performed based
on on-board sensor measurements in conjunction with pre-
built digital maps [19]. Data-fusion-based localization can
play a significant role in autonomous driving, particularly for
its capability to provide a cost-efficient localization solution
[23]. However, the GNSS integrity and driving in complex
environments present challenges, and this approach still needs
improvement to ensure the localization accuracy and robust-
ness in real-time driving environments.

III. VEHICLE LOCALIZATION

Localization in autonomous driving systems provides the
vehicle location and orientation with respect to the reference
frame. A general architecture that can be used for vehicle
localization in autonomous driving systems is shown in Fig.
1. For the purpose of self-localization, autonomous vehicles
can collect data from various sources including GNSS re-
ceivers, wheel encoders, IMUs, lidars, cameras, and maps.
The preprocessing stage involves various types of operations
including downsampling, feature extraction, and concatena-
tion. For a localizer, different localization approaches, such
as GNSS-based localization, dead reckoning, map-based lo-
calization, and fusion-based localization, can be considered.
The localization results are then sent to planning and control
systems for safe and efficient execution of autonomous driving.
Note that the illustration in Fig. 1 is an example of the
general architecture for vehicle localization and that the system
architecture can be designed differently—for example, with
additional types of sensors and fusing data at a different level
of abstraction. As an example of this, the results from the
preprocessing stage can also be directly sent to the fusion
localizer for lower-level fusion, but the representation for such
data flows is omitted in Fig. 1 for the sake of simplicity.

In this paper, we employ a map-based vehicle localization
approach using 3D lidar scans, which is well capable of
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Fig. 1. Localization architecture in autonomous driving systems.

achieving the required localization accuracy and reliability for
autonomous driving. For the implementation of vehicle local-
ization described in this work, we used a local machine run-
ning on Ubuntu 18.04 LTS, and our development environment
setup included ROS Melodic and Autoware 1.14.0. A 128-
channel lidar (Ouster OS1-128) was used for data collection
for map generation and vehicle localization. Prior to vehicle
localization, we first generated point cloud maps based on the
lidar data we previously recorded in the form of a rosbag
file, which stores ROS message data. In order to perform
vehicle localization, we used the NDT matching method for
3D lidar scan matching, which can yield localization accuracy
on the order of centimeters [12]. The process of NDT scan
matching as well as the steps for performing point cloud
map generation and vehicle localization are presented in the
following subsections.

A. NDT Scan Matching

The NDT scan matching method [5], [20], [21] attempts
to match the lidar points from each received scan to the
probability functions obtained from the reference point cloud
map. In order to transform the point cloud map into NDT cells,
the point cloud map is first discretized into fixed grid cells, and
then a probability distribution is assigned to each grid cell by
computing the mean and covariance. For vehicle localization,
the rotation and translation parameters for matching each lidar
scan received are optimized by minimizing the score function
with Newton’s method. This optimization process is repeated
until the convergence criteria are met or the iteration limit is
reached. The process of the NDT scan matching method can
be summarized as follows:

1) Discretize the reference scan data into grid cells.
2) Calculate the mean and covariance for each grid cell.
3) Initialize the rotation and translation parameters.

4) Based on the parameters, transform the input scan into
the coordinate frame of the reference scan.

5) Evaluate the current parameters with the NDT score
function.

6) Calculate and update the transformation parameters us-
ing Newton’s method.

7) Repeat Steps 4–6 until converged or iteration limit is
reached.

B. Point Cloud Map Generation

In order to perform map-based vehicle localization using
3D lidar scans, it is necessary to first gather lidar data and
generate lidar point cloud maps for the driving test area. This
subsection describes the necessary steps for generating point
cloud maps with Autoware from lidar data previously recorded
in the form of a rosbag file. The lidar data we used in this
work were collected with a single lidar sensor. Regarding
building the ROS driver for the Ouster lidar and recording
and replaying the lidar data in the ROS environment, one
may refer to the instructions available at the GitHub page for
Ouster SDK1 . The steps for generating a point cloud map by
utilizing the NDT mapping implementation in Autoware can
be summarized as follows:

1) Launch Autoware Runtime Manager.
2) Specify the replay and metadata parameters for the lidar

to publish ROS topics from recorded data.
3) Load the previously recorded rosbag file.
4) Set /use_sim_time to true to work with a simulated

clock.
5) Define the transform and load the vehicle model.
6) Activate ndt_mapping in the runtime manager.
7) Relay the point cloud topic to /points_raw.

1https://github.com/ouster-lidar/ouster example
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8) Open RViz for visualization of the mapping process.
9) Start the mapping process in the runtime manager.

10) Save the point cloud map and stop the mapping process
when mapping is complete.

For interested readers, we created a detailed step-by-step
tutorial video for generating a point cloud map with Autoware
and made it available online2.

C. Map-Based Vehicle Localization Using Lidar Data

The map-based vehicle localization in this work is per-
formed with 3D lidar scan matching. The rotation and transla-
tion parameters for matching each lidar scan with the point
cloud map are estimated through the NDT scan matching
method. This subsection describes the procedure for perform-
ing vehicle localization with Autoware, with an assumption
that the point cloud map for the area of interest is available
for use. The map-based vehicle localization can be performed
based on either real-time lidar data or previously collected
lidar data recorded in the form of a rosbag file. Although the
procedure described below is intended for the latter, one can
simply replace the steps related to utilizing a rosbag file with
steps relevant to establishing the connection between the lidar
sensor and the local machine. The steps for performing vehicle
localization by using the NDT scan matching implementation
in Autoware can be summarized as follows:

1) Launch Autoware Runtime Manager.
2) Specify the replay and metadata parameters for the lidar

to publish ROS topics from recorded data.
3) Load the previously recorded rosbag file.
4) Set /use_sim_time to true to work with a simulated

clock.
5) Define the transform and load the vehicle model.
6) Load and activate the point cloud map.
7) Activate voxel_grid_filter in the runtime man-

ager.
8) Activate ndt_matching in the runtime manager.
9) Relay the point cloud topic to /points_raw.

10) Open RViz for visualization of the localization process.
11) Provide initial pose information for NDT scan matching.
12) Start the localization process in the runtime manager.

We also created a detailed step-by-step tutorial video for
performing vehicle localization with Autoware and provided
it online for those who are interested3.

IV. EXPERIMENTS AND RESULTS

For the implementation and testing of the vehicle local-
ization system described in this paper, our test vehicle was
equipped with an Ouster OS1-128 lidar, which we mounted
on top of the vehicle roof rack such that it provides a complete
view of the vehicle surroundings. The experiment setup also
consisted of a local machine equipped with Intel Core i9-
9900K CPU, Nvidia Titan RTX, and 32 GB of memory. We
used the ROS and Autoware open source software for point

2https://www.youtube.com/watch?v=ZGqG9sYpKns&t=9s
3https://www.youtube.com/watch?v=1SFw0eP7Ilc

(a)

(b)

Fig. 2. Experiment setup and driving test environment. (a) Test vehicle and
sensor configuration; (b) scenes from the driving test area.

(a)

(b)

Fig. 3. Point cloud map of the student parking lot at Kyungpook National
University. (a) Map generation process; (b) visualization of the point cloud
map.

cloud map generation and vehicle localization in a real-time
driving environment. For an initial performance evaluation of
the vehicle localization system, we conducted experiments in
the student parking lot at Kyungpook National University,
located in Daegu, South Korea. The sensor configuration and
the driving test area are shown in Fig. 2.

Prior to vehicle localization experiments we first generated
the point cloud map of the driving test area as shown in Fig. 3.
Fig. 3a shows the images of the accumulated point cloud taken
during the mapping process, and Fig. 3b shows the complete
point cloud map for the driving test area. For the purpose of
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map generation we recorded lidar data in the form of a rosbag
file while driving once around the test area. The vehicle was
driven at a speed lower than 2.5 m/s in order to minimize
the lidar scan distortion. The point cloud map was created by
utilizing the NDT mapping implementation in Autoware, and
the parameters for map generation were defined as follows: a
resolution of 1 m, a maximum iteration number of 30, a voxel
grid size of 1 m, a maximum scan range of 200 m, a minimum
scan range of 5 m, and a minimum add scan shift of 1 m.

The results from our vehicle localization experiments con-
ducted in a real-time driving environment are shown in Fig. 4.
Both the forward-looking scene and the vehicle localization
result are shown here for different time instances, and the
location as well as the orientation with respect to the map
coordinate frame at each time instance are highlighted with a
red circle. For the test run, the vehicle was driven around the
test area in a counter-clockwise direction at a speed of about
4 m/s. We used the previously built point cloud map shown in
Fig. 3 and the NDT scan matching implementation in Auto-
ware in order to perform the map-based localization using 3D
lidar scans. Similar to the parameters set for map generation,
the resolution and the maximum iteration number for NDT
scan matching were set to 1 m and 30, respectively. The initial
pose information for NDT scan matching was inputted at the
start of each test run. The experiments for real-time vehicle
localization were carried out on a different day than the day
we recorded the lidar data for point cloud map generation.
This is because the number as well as the location of the
vehicles parked in the driving test area change from day to
day, which is important for testing the robustness of the map-
based localization approach. From this initial performance
evaluation, we found that the map-based localization system
described in this paper is capable of achieving the level of
localization accuracy and reliability required for autonomous
driving in a campus environment.

V. CONCLUSION

In this paper, we presented the implementation of the
vehicle localization system based on lidar scan matching. Prior
to conducting vehicle localization experiments, point cloud
maps for the driving test area were created based on the
lidar data we previously recorded. We implemented map-based
localization by utilizing the NDT scan matching method for
matching lidar measurements with the point cloud maps in a
real-time driving environment. In addition, we provided prac-
tical step-by-step procedures for the implementation of point
cloud map generation and vehicle localization in a ROS-based
system. Through real-time vehicle localization experiments
conducted with our test vehicle, we demonstrated that the map-
based localization system described in this work achieves a
reasonable accuracy for real-time vehicle localization without
significant computational complexity.

The future scope of this work is to improve the real-time
localization performance through parameter optimization and
also to create highly accurate point cloud maps by utilizing
other mapping schemes. NDT scan matching parameters such

(a)

(b)

(c)

(d)

(e)

Fig. 4. Qualitative results of the real-time vehicle localization experiment.
(a) t = 26 s; (b) t = 53 s; (c) t = 59 s; (d) t = 100 s; (e) t = 113 s.

as the voxel grid size and maximum scan range will be
further optimized to enhance the real-time computation per-
formance while preserving the localization accuracy required
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for autonomous driving. Recently released open-source SLAM
implementations that employ a high-frequency IMU and a
GNSS receiver along with a 3D lidar sensor will be considered
for improving mapping accuracy. In addition, we plan to
investigate methods to update the localization parameters in
an adaptive fashion based on the driving environment.
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