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Abstract—Zero-correlation-zone (ZCZ) orthogonal finite-
length sequence pairs of complex values or real values are 
proposed for underground multiplexing coded sonar. Primary 
orthogonal sequence pair constructed from element sequences is 
lengthened by zero-value insertion and convolved with a real-
valued common sequence and leads to orthogonal sequence pair. 
Polyphase sequences or low magnitude real-valued sequences 
are used for transmitting at efficient drive power. Process gain 
is decided by the zero-value insertion length. The sequence pairs 
can be transmitted by single or no carrier. 

Keywords—Huffman sequence, ZCZ, orthogonal, finite-
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I. INTRODUCTION  
 A chirp coded elastic wave is adopted for intensifying the 

energy transmission through lossy path in underground prove, 
where for computer tomography, transmission characteristics 
through different paths are obtained by using time-division 
multiplexing of the chirp code for long time interval [1]. For 
the efficient measuring, parallelly operated wide ZCZ 
multiplexing system is to be developed. As the similar system, 
multiple-input multiple-output (MIMO) systems are 
developed for the applications to mobile phones and 
automobiles [2], where almost system transmits periodic 
waveforms that accompanies extra calculations over a period. 
If the multiplexing system to transmit isolated waveforms is 
developed, calculations may be saved. Isolated waveforms 
may be constructed from complementary sequence pairs or 
Huffman sequence. Mutually orthogonal complementary 
sequence pairs have been investigated [3], where their 
application to practical system requires independent 
transmission of pair sequences and the increase of 
multiplexing signals reduces to complicate the system. 
Huffman sequence is a non-two-valued finite-length sequence 
with impulsive aperiodic autocorrelation function [4]. One of 
the authors proposed orthogonal Huffman sequences for code-
division multiple-access (CDMA), which have narrow ZCZ 
orthogonality and not-small magnitude of sequence value [5]. 
We cannot construct wide ZCZ orthogonal and small-
magnitude sequences with the same impulsive autocorrelation 
function. The authors also have developed underground sonar 
using a Huffman sequence with length 11822 and maximum 
magnitude 5.2 [6],[7] and have considered ZCZ orthogonal 
sequences proper to multiplexing one [8]. 

In this paper, we propose the wide ZCZ orthogonal and 
small-magnitude sequences by combining complex-valued 
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or real-valued orthogonal Huffman sequence pairs and a real-
valued Huffman sequence. The multiplexing system using the 
sequences can achieve single or no carrier isolated waveform 
multiple transmission and simultaneous parallel outputs 
among multiple transmitters and multiple receivers and can be 
applicable to multiplexing coded radar, sonar, etc. Section II 
introduce vision of underground multiplexing sonar. Section 
III develops generalized Huffman sequence. Section VI 
provides complex-valued or real-valued orthogonal sequence 
pairs and low-magnitude real-valued sequence. Section V 
constructs ZCZ orthogonal sequence pairs. Section VI 
explains signal transmission and processing. Section VII is 
conclusion. 

II.   VISION OF MULTIPLEXING CODED SONAR 
Fig.1 shows the vision of a multiplexing coded sonar. 

Fig.1(a) shows positions of transmitters ,  and receivers ,  and paths of signals from ,  to ,   ,as 
underground elevation view. Fig.1(b) shows transmitting 
signals on   ,  and detected signals on ,  through the 
paths, where the other signals do not interfere with the 
detected signals in a specified interval:  is output from   to  , and   is  output from   to  , and   is output from  to  , and   is output from  to . 
Transmitters and receivers  simultaneously operate and 
parallelly execute signal processing. 

III.   GENERALIZED HUFFMAN SEQUENCES 

A. Fundamental relations of sequences 
From a pair of finite-length transmitting sequence ℓ, 

and reference sequence ℓ,  of length     1  (  0,1, ⋯ ,   1, ℓ  0,1, , ⋯ ,   1 , transmitting and 
reference codes of time function are derived as 

 ℓt  ∑ ℓ,  Δ                        (1) 

 ℓt  ∑ ℓ,  Δ                         (2) 

                                                                           

Fig.1.  Vision of multiplexing coded sonar. 
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where   is Dirac’s delta function of time   and Δ is time 
interval between weighted impulse train. The Fourier 
transforms of (1) and (2) are given by 

  ℓ   ℓ   ∑ ℓ, ,       (3) 

 ℓ   ℓ   ∑ ℓ, ,        (4) 

where   is frequency,     and   √1 . Cross-
spectrum between ℓ and ℓ is expressed as 

   ℓ ∙ ℓ∗   ∑ ℓ,ℓ,   ,                  (5) 

where ℓ∗ is  the complex  conjugate of ℓ, as 

         ℓ∗  ∑ ℓ,∗    ∑ ℓ,∗             (6) 

and the auto-equivalent correlation function between ℓ, 
and ℓ, is expressed as 

  ℓ,ℓ,,   ∑ ℓ, ℓ,∗   .                   (7) 

Here, we force the auto-equivalent correlation function to be 

    ℓ,ℓ,  ,  ,  , ,           (8) 

which has unity at shift  ′  0 ,   at positive shift end ′  and  at negative shift end   , where , , , 
and  ,  denote Kroneckar’s deltas. The complex      
correlation values at positive and negative shift-ends are 
expressed as  

        ℓ,ℓ,∗  ||    ,              (9) 

       ℓ,ℓ,∗  ||  ,            (10) 

respectively, where   and   are phases of   and  . 
Thus, the cross-spectrum (5) is decomposed as 

   ℓ ∙ ℓ∗    1             

          ,  (11) 

where   

        ⁄    ,                               (12)  

   ℎ  1 2√⁄    ,                          (13) 

and     2ℎ⁄  and     2ℎ⁄   in 
reverse.  

B. Complex-valued sequence 
For ||  ||  1, we obtain 

       ⁄  ,                                 (14)  

     ℎ  cosβ   ⁄ 2||⁄ ,      (15) 

                                   ||  ||,                                   (16) 

where    .  Here,  we select the same phase relation   

     as that of the real valued sequence of , ,  later on, and we obtain 

     cosβ  1 2||⁄   ,                           (17) 

    1 2⁄ ≤ || ≤ 1         ,                         (18) 

      2;    0,1, ⋯ ,   1 ,            (19)  

where     3⁄ ≤  ≤  3⁄   . 

In this case, the cross-spectrum (11) is decomposed as 

       ℓ ∙ ℓ∗   ∏    Ω  

                           × ∏    Ω  ,              (20) 

where Ω   and      1/|| .  Equation 
(20) gives a complex-valued sequence pair of ℓ, and ℓ,∗   
. The case of  ≠  is not discussed here.  

C. Real-valed sequence 
For  real-valued     > 0 , it holds 

  ±  ℎ±ℎ  ±||||  .       (21)                               

The cross-spectrum (11) is decomposed as 

   ℓ ∙ ℓ∗   ∏    Ω  

                             × ∏    Ω  ,             (22) 

where Ω   and     1/||[5] .  Equation  
(22) gives a real-valued sequence ℓ,  ℓ, in principle, 
but a pair of real-valued sequences of ℓ,  and ℓ,  for 
intended purpose.  

IV. ORTHOGONAL PAIRS AND RELATED SEQUENCE 

A. Orthogonal pairs of complex-valued sequences 
 For the transmission of signals with low amplitude 

deviation, polyphase sequence is introduced. For 
convenience, we construct a pair of sequences for length  9   8 . From (20), we have the expression  

 ℓ ∙ ℓ∗       ×          

  ×                                        (23) 

where   Ω,   Ω and    , and hence we 
select four pairs of sequence spectra 

    ||      ,(24) 

  ∗  ||     

        ×       ,         (25) 

    ||      ,(26) 

       ∗  ||     

        ×       ,         (27) 

    ||      ,(28) 

  ∗  ||     

                ×       ,         (29)  

   ||      ,(30) 

          ∗  ||      

        ×       ,         (31) 

where all spectra of parameters alternating between and  
correspond to those of sequences inverted in index. Equations 
(24) to (27) are expanded by polynomials as 
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    ||       

               )                        (32) 

  ∗  ||      ) 

                                                                         (33) 

    ||       

               )             (34) 

 ∗  ||{       

                

                 

            } ,      (35) 

and those lead  sequence pairs as 

   {,}  ||[0, , , , , , , , 1,0]  , (36) ,∗   ||[1, , 0,0,0,0,0,0, , ], (37) 

 {,}  ||[0, , , , , 
                                        , , , 1,0],                   (38)                                                                                                                                 

    ,∗   ||[1, ,   , 
             ,   ,   , 

    ,   , , ]  
(39)  

where {,} and {,} start at one chip delay, and  ,∗  and ,∗  conform to such relation as (6).   

 Cross-spectra between sequence pairs are given by 

   ∙  ∗   ∙   ∗       ×     ,       (40) 

          ∙  ∗   ∙   ∗ 

         ,   (41) 

  ∙  ∗       

 ×     ,                  (42) 

  ∙ ∗       ×     ,                 (43) 

where the factors of ℓ ∙  ℓ2∗  and ℓ2 ∙  ℓ∗  have  and  
exchanged. Let a set of two pairs   of  ℓ, , ℓ,∗  and ℓ,  , ℓ,∗   represent ℓ, ℓ  and then pair sets 0,1 , 1,2  , 2,3 , 0,3 are orthogonal at shift   1 2, 
and the other sets 0,2 , 1,3 are orthogonal at shift  1, 2,3 4 . Thus, we obtain a set of orthogonal four 
sequence pairs < ,,  ,∗  > ,  < ,, ,∗  >  ,<,, ,∗  > ,  < ,,, ,∗  >. In the above, we 
can obtain another set of orthogonal pairs by replacing  by . Generally, we have a set of orthogonal sequence pairs  <ℓ,ℓ, ℓ,ℓ∗  > ℓ  0,1, ⋯ ,   1 for   2;  2,3,4, ⋯ [8]. In order to understand correlation function, we 
call the correlation function between the desired  transmitting 
sequence ℓ,ℓ  and the desired reference sequence ℓ,ℓ∗   the auto-equivalent correlation function and that 

between the undesired transmitting sequence ℓ,ℓ and the 
desired reference sequence ℓ,ℓ∗   the cross-equivalent 
correlation function. Let us show the concrete example.  Eq. 
(40) is expanded as  

   ∙  ∗  {     

       

           }                      
(44) 

and the cross-spectrum between , and ,∗  becomes  ∙ 1∗ . Then we obtain the cross-equivalent correlation 
function between , and ,∗  as 

  ,,   ∑ ,,∗  {,  

   ,  , 

            ,  , 

   ,  , 

   ,  ,}                                    (45) 

and expresses orthogonality at shift ′  0  ,where for   8 
and    8⁄  ,  it follows |  |  2 20  ≅ 0.196 , 

     2  60  ≅ 1.914, ||  120 ≅ 0.541   the 
maximum absolute value of this cross-equivalent correlation 
function takes about 1.036 at    1.  Similarly, the other 
cross-equivalent correlation functions take 0 at shift   0. 
The peak of cross-equivalent correlation function appears at    1 for ,,,  ,, and ,,  , at    2  for ,, and ,, and at   3  for  ,, . The non-zero values of cross-equivalent correlation functions are eluded for the later synthesized sequences. The auto-
equivalent correlation function of shifted sequence pair 
follows (8). The polyphase sequences ℓ,ℓ can be used for 
making transmitting signals with low deviated amplitude, as 
mentioned later.  

B. Orthogonal pairs of real-valued sequences 
In the real-valued sequence with the absolute shift-end 

correlation value ||  1 2ℎ ≡⁄  2⁄  ;  ≪ 1 , 
the following holds  

   ≅  2⁄                                 (46) 

for  < 0.2. In this case, similarly as mentioned above,   we 
have  real-valued orthogonal sequence pairs for Ω  1  , by replacing     in the above section with   . 
For example, two pairs corresponding to (36) to (39) are 
replaced with 

 {,}  ||[0, , , , , , , , 1,0], 
                                                                                          (47) 

     ,  ||[1, , 0,0,0,0,0,0, , ],(48) ,  ||[0, , , , , , , , 1,0], 
(49) 

  ,  ||[1, ,   , 
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   ,   ,   , 
  42  2, 32  2, 4, 3],        (50) 

where  ≅ 1.091,  ≅ 1.078,  ≅ 1.065,  ≅ 1.051, 
  ≅ 1.038,  ≅ 1.025,  ≅ 1.013,  ≅ 0.905,  ≅ 0.916, || ≅ 0.498 for   0.1,    . Transmission of 
these sequences does not always need sine and cosine waves 
as for modulating complex values .  

C. Real-valued sequence of long-length  
For real-valued sequence with shift-end correlation absolute 

value || ≪ 1 2⁄   ,  four formulae are given according to 
positive or negative  and even or odd length  [5]. The 
sequence spectrum for  < 0 and odd length   is given by  

     ||     ⁄  

   × ∏   2 ⁄                    (51) 

where       and    1  ⁄ ∏  ⁄    .                   

The paper[5] presents ZCZ orthogonal sequence set from (51), 
where   ZCZ,  sequence magnitude and family number are 
restricted by tradeoff relations. The paper[6] presents a 
sequence of positive   and even long length   due to 
parameter selection derived from quadratic residue, where the 
sequence magnitude gradually increases with the length and 
reaches 5.2 with    11822.  

Here, we aim to obtain single real-valued sequence with long 
length and low sequence magnitude. From parameter 
combinations of (51) for     1  2 , prime  14, a spectrum of a real valued sequence is derived  

   ||    1 

  × ∏ { ⁄  2   

           2    2   1}, (52) 

where       and {}  1,2, ⋯ ,   1  is 
quadratic residue sequence from prime   14[6],as 
shown in Table I ( and – denote 1and 1, respectively).  
An example of the sequence is given by 

 ,   ,  [0.724,   1.447,  1.447, 0.341, 0.764,  
 0.422,  0.764, 0.341, 1.447,1.447, 0.724]              

TABLE I.    QUADRATIC RESIDUE SEQUENCE  

 

 
Fig.2.  Maximum absolute value of sequence. 

 
Fig.3 Correlation image between zero-value inserted sequences. 

where   10, ||  1/21,      and    ≅ 0.3042 . 
Fig. 2 shows the maximum absolute value versus sequence 
length, calculated from (52) adjusting the value of  ||, where 
the sequence magnitude is below about 2.5.   In the next 
section the real-valued sequence is included in sequence 
construction and reflects the magnitude of transmitting 
sequence.  As an example, this sequence is introduced, though 
the smaller magnitude real-valued sequence may be 
developed in the future. 

V. SYNTHESIS OF ORTHOGONAL ZCZ SEQUENCES 

A. Correlation functions of zero-value inserted sequences  
We insert zero values to the orthogonal sequence pair  <ℓ,ℓ, ℓ,ℓ∗  > ℓ  0,1, ⋯ ,   1 as 

  ℓ,  ∑ ℓ,ℓℓℓ ,                        (53) 

    ℓ,∗  ∑ ℓ,ℓ∗ℓℓ ,  ,                      (54) 

where   1,2,3, ⋯ . The auto-equivalent correlation function 
of ℓ, and {ℓ,∗ } is reduced to  

  ℓ,ℓ,   ∑  ℓ,ℓ ℓ,∗   ℓ,⨀ℓ,∗  

                 ,  ,  ,,                     (55) 

where ⨀ denotes convolution.  The cross-equivalent 
correlation function between ,  and {,∗ } , for example, 
corresponding to (45) is given by 

    ,,   ,⨀,∗ = {, 

      ,  , 

                ,  , 

            ,  , 

            ,  ,} .                               (56) 

Similarly the other cross-equivalent correlation function takes 
non-zero value at shift ′  ± and 0 at shift ′ ≠ ±  1,2, ⋯ ,    2⁄  1 ,where ±  sign corresponds to 
combination  of sequences such as ,,  ,,∗  . Fig.3 
shows the image of auto-equivalent and cross-equivalent 
correlation functions, based on the former correlation 
functions. Thus sequence pair < ℓ,, ℓ,∗  > is orthogonal 
at [  1,   1] . 
B. Correlation functions of convolved sequence 
   We prepare the real-valued sequence ′,  ′,with 
length     1 whose autocorrelation function is 
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 ′,,   ′,⨀′, 
         ,  ′,  ′,         (57) 

and make the transmitting sequence ℓ, by convolving it to {ℓ,} , and the reference sequence ℓ,∗  by convolving it to ℓ,∗ . The auto-equivalent correlation function of  ℓ, and ℓ,∗  is given by 
  ℓ,ℓ,   ℓ,⨀,⨀ℓ,∗ ⨀, 

          ,⨀,⨀ℓ,⨀ℓ,∗  
         ,  ,  , 
            ⨀,  ,  ,) 

     ,  ,  ,  , 
  ,+,  ,  

   ,  , ,                      (58) 
where the average length of synthesized sequence is     ′ and normalizing coefficient to give ℓ,ℓ,=1 at  0  is 

      ⁄  .                        (59) 
The auto-equivalent correlation function at the peak area 

 ℓ,ℓ,  ,  ,,          (60) 
where ′ ≤ ′ ≤ ′ . The cross-equivalent correlation 
function of ℓ, and ℓ,∗  is given by 

   ℓ,ℓ,   ⨀⨀ℓ,⨀ℓ,∗  
                  ,  ,  ,⨀ℓ,ℓ,  (61) 
 and at the area   < ′ <   

    ℓ,ℓ,  ℓ,ℓ,,  ℓ,ℓ,, . (62) 
If we select  ′  3 2⁄ ,  we obtain the maximum orthogonal 
area as 

    [  2⁄  1,  2  1⁄ ] .                        (63) 
 If   2 ≤ ′ ≤ 3 2⁄ , we obtain the less orthogonal area 

     [    1,     1] ,                    (64) 
where ′ should be as near to 3 2⁄  as possible. Fig.2 will   
help to understand these relations. Correlation processing is 
effective around the area of (63). 

C. Process gain on signal detection 

Suppose signals  ℓ,ℓ  1, ⋯ ,   1  are transmitted  
from the respective points at the specified time, and  
multiplexed and delayed signals reach to a receiver under 
existence of additive white Gaussian noise {} with variance , and the desired ℓ′ℎ  signal is detected by a correlator 
with reference signal ℓ,∗   . If time delay and signal 
attenuation are ignored, the correlator output for the desired 
signal at shift ′  0 is given by 

  ∑ ℓ,   ℓ,∗  1   ∑  ℓ,∗     (65) 
and the power of noise out is expressed as 
       ∑ ℓ,∗       

    ∑  ∑ ∑ ℓ,ℓ∗ℓℓ ,′,  
 × ∑ ∑ ℓ,ℓℓℓ ,′, 

   ≅  ′ ∑ ℓ,∗    ′||  ,    (66) 

       4  || ∑ ℓ,∗                    (67) 
where the absolute value of ℓ,∗ ;   0,1, ,   1  is || , as seen in the sequence {ℓ,∗ } of   8  and this 
nature holds for   16, 32, ⋯  . For   8  , referring to 

,∗  of (37),  ,∗  of (39), ,∗  from (29) and ,∗   from 
(31), we obtain 

      4                              , ℓ  0,                  4  6|  | , ℓ  1,3,              4  2|  |, ℓ  2                               (68) 

where |  |  |  |  2sin 2/  and |  |  2sin 4/.  
The power of input signal ℓ, is given by 

       ∑ ℓ,   ′  1||     (69) 

where     1  ′ is the length of ℓ,. 
Since peak power  of signal output is unity, the signal to 
noise power ratio of correlator output  

   ≅ ||                               (70) 
and the signal to noise power ratio of correlator input  

   ≅  ||                             (71)                   
are obtained.  Hence, the process gain is given by  

               / ≅ || .               (72) 
For   8  and    8⁄ ,  it follows ||  0.293,  ≅ 4,4.23, 4.30,  || ≅ 1.17, 1.24, 1.26 for ℓ  0,13, 2.  By 
selecting the smaller, || and || gradually approach 
1/2 and 1, respectively. 

Similarly, the process gain on the real-valued orthogonal 
sequence pairs of (47) to (50) and corresponding pairs from 
(28) to (31) are given by 

    ≅ ||   .                            (73) 

where     ||  ,   || ∑ ℓ, ,  ≅ || and    || ∑ ℓ, . 
When   8,   0.1, we obtain ≅ 3.68, 3.87, 4.02, 4.28 
and  ≅ 1.09, 1.03, 1.01, 0.94 for ℓ  0,1, 2, 3,respectively 
and || ≅ 0.4975 and || ≅ 0.993, 0.987,1.00, 0.996 
for ℓ  0,1,2,3 , respectively and thus  ≅  . 

  From (72) and (73), the process gain is expressed as    ≅ , although strictly   is replaced by     ′   1⁄ . 
Decreasing of ′  connects to decreasing of orthogonal area 
of (64). In the practical elastic wave probing, the great large 
process gain is desired for transmitting effective energy to the 
receiver. For example, sequence length is   10,000 to 20,000 and family number is 4 to 8 because the wave is 
emitted toward the wide angular area. If we select      1  , the superposed amount of the inter-channel 
interference as  ℓ,ℓ, of (62) may be negligible. In this case, 
we obtain  ≅ ′ and the system is LCZ (low correlation 
zone) quasi-orthogonal one. In other case, if the wide ZCZ 
system is desired, we must select the sequence of length  ≅1.5 though  ≅  . 

D. Magnitude of transmitting sequence 
One object of this paper is generation of suppressed 

magnitude transmitting sequence. In reference [7], a Huffman 
sequence with length 11822  and maximum magnitude  5.2 
and rms value 1  is used, where power efficiency of 
transmitting amplifier is 1 5.2⁄ ≅ 1 27⁄  corresponding to 
the process gain loss. In this paper, rms values of complex-
valued transmitting sequences ℓ,  for   , 2  are 
approximately || , 2||   from (69) and their 
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magnitude are below ′, , 2′,  where ′, is the maximum amplitude of the common real-
valued sequence ′,, because ℓ,′,  ||′, 
and ℓ,′,  ℓ,′, ≤ ||,  ,  in 
the significant part to raise the magnitude of the convolved 
sequences. Thus, for   , 2 ,  the magnitude of the 
normalized transmitting sequence  are below ′, , √2′,, and for   3 2⁄  , is estimated to be below 3/2′,  . In this paper, an example of the real-
valued sequence of ′, ≅ 2.5 is introduced. 

VI. SIGNAL TRANSMISSION AND PROCESSING 

A. Transmission of complex-valued sequences 
The transmitting signal is generated by weighting   real part ̂ℓ, and imaginary part   ̂ℓ,  of  ℓ,ℓ  1, ⋯ ,   1   on 

cosine and sine carriers, respectively and adding them, and 
the signal is converted to physical wave and transmitted 
toward the path at the respective point.  Multiplexed and 
delayed waves reach a receiver at the other distant point and 
are converted to electric signal by sensor and demodulated to 
cosine and sine component and reconstructed to complex-
valued signal and correlated with the desired sequence ℓ,∗ ℓ′  1, ⋯ ,   1 . The ℓℎ received signal with time 
delay  and angular frequency   of carrier and chip time 
interval  is given by 

 ℓ    ∑ {̂ℓ,    
  ̂ℓ,  }  ×            (74)                  

where  is rectangular chip waveform with height 1 and 
duration . The complex-valued signal reconstructed by in-
phase and quadrature-phase components is given by 

  ℓ     ∑ ℓ,         (75) 
and the desired output signal of correlator is given by 

   ℓ,ℓ    ℓ   ℓ∗   d 

 =   ∑ ℓ,ℓ, ℎ    )   

                 =  ℎ  ,    0 ,                            (76) 
where the ℓℎ reference signal to correlator is given by 

   ℓ∗ t  ∑ ℓ,∗                       (77) 
and     1  ′ is the length of ℓ,∗  and the 
autocorrelation function of  is given by 

   ℎ′                          (78) 
which is triangular pulse of height 1 and base 2.The  
absolute value of (76) gives the intensity of response  ℎ   though negative or positive reflection cannot be  
discriminated. 

B. Transmission of real-valued sequences 
  The signals constructed from real-valued orthogonal 
sequence pairs do not always accompany sinusoidal carrier. 
In case of using cosine carrier, imaginary parts of ℓ, and ℓ,∗  disappear, and 
in-phase correlation output 

   [ℓ,ℓ ]   ℎ  ,    0 ,   (79) 
and quadrature phase correlation output 

   [ℓ,ℓ]   ℎ  ,    0     (80) 
and response intensity 

      ℎ  /2,    0             (81) 
are obtained [7].  

   In case of using no carrier, the correlator output 
    ℓ,ℓ   ℎ  ,    0                  (82) 

 is obtained and is multiplied by 1or 1 sign corresponding  
to 1 or 1 reflex coefficient through transmission path. 

VII. CONCLUSION 
    For underground multiplexing coded sonar, finite-length 
orthogonal ZCZ sequence pairs of complex values or real 
values are proposed. Orthogonal sequence pair is lengthened 
by   1zero value insertion and convolved with a real-
valued common sequence of length     1.  Selection 
of    3 2⁄   gives wide ZCZ and process gain  . The 
magnitudes of transmitting sequences are estimated to be 
below3/2′,for complex-valued sequence pairs. 
Selection of     gives wide LCZ and process gain .These selections follow applications using complex- or 
real-valued pairs. The merits of this sequence set are to 
have the impulsive auto-equivalent correlation function 
detect its reaching point and to transmit signals through 
path suitable to narrow carrier band or base band. Those 
are important factors for geophysical measurements. 

 The application to practical instrumentation is a goal in the 
future, where we can use such technique that the value of real 
or imaginary part is converted to 1 and 1 values by high-
efficient encoding method [9]. 
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