A hybrid Modified Black Widow Optimization and
PSO Algorithm: Application in Feature Selection
for Cognitive Radio Networks

Sarra Ben Chaabane*, Kais BouallegueT, Akram Belazit, Sofiane Kharbech*, and Ammar Bouallegue*
* Laboratory Sys’Com-ENIT (LR-99-ES21), Tunis El Manar University, Tunis 1002, Tunisia
T Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164, Rennes, France
i Laboratory RISC-ENIT (LR-16-ES07), Tunis El Manar University, Tunis 1002, Tunisia
sarra.benchaabane @ enit.utm.tn

Abstract—In spectrum sensing issues, like in any other clas-
sification problem, the performance of the classification task
is significantly impacted by the feature selection. This paper
proposes a new hybrid optimization algorithm to optimize feature
selection for a Deep Neural Network (DNN) classifier. To surpass
the premature convergence problem and improve the exploitation
ability of the original Black Widow Optimization Algorithm
(BWO), we mix a modified version of BWO and Particle Swarm
Optimization (PSO), called MBWPSO. The aim is to enhance the
performance of a blind spectrum sensing approach in the context
of cognitive radio (CR) for wireless communications. Computer
simulations show that the MBWPSO algorithm outperforms the
original one and a set of state-of-the-art algorithms (i.e., HS,
BBO, PSO, and SA) algorithms. The MBWPSO also exhibits the
best performance once applied for feature selection in the above
context.

Index Terms—BWO optimization algorithm, deep learning,
feature selection, spectrum sensing, wireless communications.

I. INTRODUCTION

Feature selection is an essential preprocessing technique
in learning applications, eliminating irrelevant and redundant
features [1], [2]. So, it helps to reduce dimensionality and
improve the accuracy of classification in a dataset. Therefore,
many different search techniques have been proposed to fea-
ture selection, such as metaheuristic algorithms. Metaheuristic
algorithms have achieved competitive results when solving
optimization problems, including feature selection [3]-[5].
There are three basic categories of these algorithms: physics-
based [6], evolutionary-based [7], and swarm-based [8]. Black
Widow Optimization algorithm (BWO) is a recently swarm-
based optimization algorithm that was proposed by Hayy-
olalam and Kazem [9]. In this paper, we propose a hybrid
modified version of BWO and PSO, referred to as MBWPSO,
that later on will be utilized for the feature selection.

The main contributions of this paper are two-fold: (i) to
overcome premature convergence of BWO and evolution stag-
nation, we boost up the mutation part of the BWO algorithm
into the direction of average mutation and the modified version
is named as MBWO; (ii)) we merge the MBWO with the
PSO algorithm, which requires a perfect balancing between
exploration and exploitation to improve the accuracy of the
solution.
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In order to validate its effectiveness, the proposed algorithm
is compared first, with a variety of most popular optimization
algorithms, the original version, i.e., BWO, Particle Swarm
Optimization (PSO) [10], Biogeography-Based Optimization
(BBO) [11], Harmony Search (HS) [12], and Simulated An-
nealing (SA) [13] on common benchmark functions before
evaluating them for feature selection example to give a better
misclassification rate for the studied classification problem.
The classification problem that we considered in this paper
is blind spectrum sensing in Cognitive Radio (CR) networks,
based on the deep learning model. Spectrum Sensing (SS) is
the technique of monitoring a specific wireless communication
frequency band, aiming to detect the presence or absence of
primary users [14], [15]. As features, the introduced approach
uses the eigenvalues of the covariance matrix of received
signals [16], [17].

The rest of the paper is structered as follows. In Section II,
we formulate the optimization problem. Section III describes
the original BWO algorithm and introduces our motivation
and improvements. In Section IV, the proposed algorithm is
evaluated by twelve optimization benchmark functions. The
performance of the MBWPSO algorithm in feature selection
is discussed in Section V. Finally, Section VI summarizes the
main findings of this study and suggests directions for future
research.

II. PROBLEM FORMULATION

In order to describe our approach and validate its perfor-
mance for real-world applications, the MBWPSO algorithm is
applied for feature selection in the context of the SS paradigm
in CR networks. SS model is the one employed in [16]. The
model is based on the eigenvalues of the covariance matrix of
the received signal as input features. In CR context, we define
two main hypotheses noted H; when the Primary User (PU) is
present and Hp when the frequency resource is vacant. Deep
Neural Network (DNN) is performed for binary classification,
making it a good candidate for the SS paradigm (Ho or H;).
We applied the DNN Feed-forward model [18]. The feed-
forward model is the simplest form of the neural network as
information is only processed in one direction. While the data
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may pass through multiple hidden nodes, it always moves in
one direction and never backward. The inputs of the DNN are
the the eigenvalues of the covariance matrix of the received
signal. The layers include three hidden layers and one output
representing the class label (Ho or H;). Hence, the entire
objective is to find the optimal feature set denoted {F}* that
gives the minimum misclassification rate.

It can be formulated as the optimization problem shown as:
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where f is the selected features vector, the Iverson bracket
[.] is a function that takes a truth value inside and returns 1
or 0 accordingly, |.| denotes the cardinality of the dataset S. y
present the true class. D is a function that returns the output
class of the DNN classifier applying the f vector.

III. IMPROVEMENTS ON BLACK WIDOW OPTIMIZATION
ALGORITHM

A. BWO, the Basic Algorithm

BWO is inspired by the black widow, which is a female
spider. Black widows spin at night. To attract the males, black
widows determine some specific locations of the net. Black
widows eat the male partner. Then, they move the laid eggs
to a nearby location. The offsprings struggle with each other
for life. The offsprings stay with the parents for a period. In
this period, they may even eat their parent. Like evolutionary
population algorithms, BWO has an initial population. Each
solution is considered as a widow. The objective function is
computed for each candidate solution. To start the optimization
process, an initial population of spiders in a matrix should be
defined. Then, the pairs of parents are chosen from the initial
population matrix to provide the offsprings in the procreation
stage. The procreation process is represented as follows:

{

where x; and x; are parents, « presents procreate rate, y; and
y, are offspring.

yi =ax; + (1 — a)xs

2
¥y = axs + (1 — a)xq, 2
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Fig. 1: Flowchart of the BWO algorithm.

The next stage is cannibalism. The black widow eats its
male partner. The BWO uses the cannibalism rate to eliminate

weak solutions from the search space. Then, the mutation
is applied, each solution randomly exchanges two elements.
Then, the newly produced member is stored, and the initial
population of BWO is updated. Fig. 1 depicts the flowchart of
BWO algorithm.

B. Motivation and Improvements

The original BWO algorithm has population initialization,
procreate, cannibalism, and mutation steps. The mutation
rule is essential in the BWO algorithm to generate optimal
convergence speed. But, the performance of the mutation stage
is deficient. So, to boost up this mutation step, increase the
convergence performance of the BWO algorithm, and avoid
trapping, we propose to apply the average direction strategy
discussed in [19]. The mutation rules are performed via three
ingredients, such as the kth generation with the current solu-
tion in the population x;[k], the kth generation with the best
solution in the population x,[k], and the kth generation with
randomly chosen individuals x,.[k]. The former two ingredients
are deterministic, while the last one is stochastic. Mutation
rules are better constructed via balancing the above three
ingredients. For better comparable fitness value, the surviving
individual in the k generation is contrasted to the (k — 1)
generation. So, the newly developed algorithm is referred to as
the Modified Black Widow Optimization (MBWO) algorithm.
The below equation illustrates the averaged mutation rule with
a devised direction.

xilk + 1] = xi[k] + m1 (Xavg[k] — %3k — 1]) + mo
X (xr1[k] — xp2[K])  (3)

Where Xq,4[k] represents the best first individuals in the
kth generation. x,1[k] and x,1 [k] are two random individuals
selected from the current generation.The parameters m;, and
mg fix the interval range [0.5, 1]

C. PSO Optimization Algorithm

The Particle Swarm Optimization algorithm (PSO) was dis-
covered by James Kennedy and Russell C. Eberhart [10]. This
algorithm is inspired by simulation of social psychological
expression of birds and fishes. The velocity of the ¢ — th
particle is defined as the change of its position. The position
and velocity vectors of all particles are generated randomly.
Then, each particle moves in the design space using the best
position experienced by that particle (xPZ°5?) and the best
solution obtained by all particles (x9%¢*). In each iteration,
the swarm is updated by the following equations:

vilk + 1] = wv,[k] + e1rq <xfB€5t -

Xl[l{i}> +4 CaTo
% (XgB(ist —x; [k‘]) , (4)

®)

where v;[k] is velocity of the particle at iteration k, x;[k] is
the position of particles at iteration k. w presents the inertia
weight. 1 and ro are random number in the interval [0, 1].
c1 and co are the acceleration coefficients.



D. Proposed Hybride MBWO and PSO Algorithm

Both MBWO and PSO algorithms contain many advantages,
but they have a few difficulties. Generally, strong local explo-
ration is presented in MBWO, but the performance of global
exploitation is poor. Fig. 2(a) and Fig. 3(a) show the evaluated
solutions using the MBWO algorithm for optimizing f5 and
f9 (two selected benchmark functions [9]), respectively. Their
correspondent convergence visualizations are plotted in Fig.
2(b) and Fig. 3(b), respectively. As shown, the algorithm fails
to reach the best solution (i.e., the (0,0) pair) and cannot
converge to the global optima.

To overcome these issues, we combine the MBWO with
the PSO algorithm, increasing the convergence performance
and leading to optimal results. The combination of MBWO
and PSO algorithm is named as Modified Black Widow
PSO (MBWPSO ) algorithm. Fig. 4 depicts the flowchart of
MBWPSO algorithm. The entire population is divided into
two stages (i.e., PSO and MBWO algorithm stages). MBWO
algorithm is used for the exploration phase. The exploration
phase means the capability of the algorithm to try out a
large number of possible solutions. The position of particle
responsible for finding the optimum solution of the complex
nonlinear problem is replaced with the position of Black
Widow. MBWO directs the particles faster toward optimal
value, as illustrated in (6). The best individuals are shared
by combining the MBWO and PSO algorithms stages and
forming a new population. The Hybridization of MBWO with
PSO merges the best strength of both PSO in exploitation
and BWO in the exploration phase to obtain the best possible
solution to the problem that avoids local stagnation. Fig.
2(c) and Fig. 3(c) show the evaluated solutions using the
MBWPSO algorithm for optimizing f5 and f9, respectively,
their correspondent convergence visualizations are plotted in
Fig. 2(d) and Fig. 3(d), respectively. As can be seen from these
figures, the MBWPSO achieved a satisfactory level in leading
to the best solution. Moreover, it is robust in converging toward
the global optima

vilk + 1] = wvi[k] + cir1 (xmBwolk] — xi[k]) + cora

X (XgBest - Xz[k]) )

(6)

IV. BENCHMARKING OF BWO AND MBWPSO
ALGORITHMS

The performance of the proposed MBWPSO algorithm is
tested by solving 12 benchmark functions under dimension
30 (dimension of agent) reported in [9]. These are grouped
into unimodal functions (f; — fg) with one global optimum
and multimodal functions (f7 — f12) with many local optima.
For all tests, the population size is set to 40. In addition to the
original BWOA algorithm, the proposed MBWPSO algorithm
is compared with BBO, HS, PSO, and SA algorithms. For all
computer simulations of this paper, we used Matlab version
9.9.0.1538559 (R2020b) Update 3.
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Fig. 2: Average best solution (i.e., the achieved minimum,
described by the y-axis) in terms of the number of objective
function evaluations (x-axis) for the benchmark function f5
using (a) MBWO and (c) MBWPSO; corresponding conver-
gence visualizations (b,d) in accordance with (a,c). (b,d) are
the contour plots of the function f5, the x and y-axis represent
the dimensions of the function, and the markers represent the
evaluated points by running the optimization algorithms.

A. Comparison Based on Solution Accuracy

Table I describes the performance of the MBWPSO through
the best mean values (Mean), the standard deviations (SD), and
the standard errors of means (SEM). The unimodal functions
(f1 — fe) allow evaluating the exploitation capability of the
studied meta-heuristic algorithms. In most of these functions,
MBWPSO is the best optimizer and successfully reaches
the global optima. The present algorithm can hence provide
perfect exploitation. Nevertheless the unimodal functions, the
multimodal functions (f7 — f12), include many local optima.
Therefore, this kind of test function is beneficial to evaluate
a given algorithm’s exploration capability. From the reported
results, we can conclude that the proposed algorithm achieves
cfficient exploitation and exploration for the tested benchmark
functions.

B. Comparison Based on Convergence

The convergence rates of the comparative algorithms are
listed in Table II. These rates are estimated using the mean
number of function evaluations (MeanFES) and the success
rate (SR). For most benchmark functions, MBWPSO presents
the highest SR and the lowest MeanFES required to reach an
acceptable solution. Except for (fs, f11, and fi2) functions,
despite the difficulty of these multimodal functions to con-
verge, MBWPSO nearly keeps the same values as the original
BWOA. For fg, the PSO has the best convergence speed. Fig.
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Fig. 3: Average best solution (i.e., the achieved minimum,
described by the y-axis) in terms of the number of objective
function evaluations (x-axis) for the benchmark function fy
using (a) MBWO and (c) MBWPSO; corresponding conver-
gence visualizations (b,d) in accordance with (a,c). (b,d) are
the contour plots of the function fo, the x and y-axis represent
the dimensions of the function, and the markers represent the
evaluated points by running the optimization algorithms.
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Fig. 4: Flowchart of the MBWPSO algorithm.

@

5 shows the convergence curves of the tested algorithms for
the benchmark functions used to manifest the convergence
performance more intuitively. The present algorithm required
the fastest convergence speed and the highest convergence
precision for most test functions compared to other algorithms.
The MBWPSO algorithm can search for optimal approxi-

mation and achieve more immediate stability for the above
benchmark functions.

C. Statistical tests

To prove the overall performance of a given algorithm,
statistical tests are required. Since, in our experiments, non-
parametric statistical tests should be provided to compare the
comparative algorithms quantitatively. As a result, we applied
the Friedman and the Quade tests [20], [21]. Fig. 6 shows
the average rankings of the tested algorithms based on the
standard errors of means (SEM). As it is shown in this figure,
MBWPSO is the best ranked. The proposed algorithm is very
efficient in balancing exploitation and exploration of the search
space and surmounts the original BWO algorithm in solving
the benchmark functions.

V. MBWPSO FOR FEATURE SELECTION IN SS

In this section, we measure the performance of the proposed
algorithm in providing the best features for SS in CR networks
using a DNN classifier. SS model is the one used in [16].
In this model, the input features are the eigenvalues of the
covariance matrix of the received signal. For all tests, the num-
ber of PU, the number of antennas, the number of observed
samples, and the number of trials are set to 1, 20, 250, and
500, respectively. Hence, the training set is set to 20 features
and 1000 samples (500 for each class Hgy or 1). Table III
illustrates the solution accuracy for all algorithms. One can
see that MBWPSO achieves the best mean. Table IV notes that
the proposed algorithm based on the feature selection approach
remains the best (minimum) misclassification rate in differents
SNR. Confusion matrices illustrated in Fig. 8 and Fig. 7 give
in-depth results and ensure that the proposed system is still
the most efficient method, compared to the original, in the
considered context.

TABLE I: Mean, SEM and SD for functions f; — fis .

BBO HS PSO SA BWO MBWPSO
Mean 2.70e-09 6.86e-13 0.00e+00 3.78e-42 0.00019 0.00e+00
f1 SD 0.00e+00 4.73e-13 0.00e+00 1.35e-42 0.0004 0.00e+00
SEM 0.00e+00 8.63e-14 0.00e+00 2.42e-43 7.53e-05 0.00e+00
Mean 50.168 2581.3 0.00012 2.22e-21 0.0001 2.40e-280
fa2 SD 0.00e+00 710.76 0.0006 1.2201e-20 0.0004 0.00e+00
SEM 0.00e+00 129.76 0.00012 2.22e-21 7.89e-05 0.00e+00
Mean 23.7669 27354 4.20e-06 1.51e-39 772.83 0.00e+00
f3 SD 0.00e+00 855.06 7.30e-06 6.15¢-40 402.50 0.00e+00
SEM 0.00e+00 156.11 1.33e-06 1.12e-40 73.487 0.00e+00
Mean 6.30e-08 6.24e-13 0.00e+00 2.82e-43 7.0964 3.37e-271
fa SD 0.00e+00 2.70e-13 0.00e+00 9.84¢-44 6.5918 0.00e+00
SEM 0.00e+00 4.94e-14 0.00e+00 1.79e-44 1.2035 0.00e+00
Mean 77.138 357.99 30.675 96.562 23272 27.461
Is SD 0.00e+00 406.82 26.444 161.78 4100.6 0.5359
SEM 0.00e+00 74.276 4.8281 29.538 748.66 0.0978
Mean 0.1295 25113 2.96e-15 0.00e+00 1.64e-06 1.2144
fe SD 0.00e+00 1.5099 1.58e-14 0.00e+00 5.13 e-06 0.6027
SEM 0.00e+00 0.27568 2.89%-15 0.00e+00 9.37e-07 0.11005
Mean -8341.6 -12568.5 -6984.9 -10475.5 -113574 -5033.7
Iz SD 0.00e+00 0.8838 849.335 345.46 929.45 1300.8
SEM 0.00e+00 0.1613 155.06 63.072 169.694 237.5
Mean 53.854 0.6166 51.439 34.657 0.0008 0.00e+00
fs SD 0.00e+00 15.392 8.4992 345.46 0.0034 0.00e+00
SEM 0.00e+00 2.8102 1.5517 63.0728 0.0006243 0.00e+00
Mean 0.1281 0.4766 1.0305 7.87e-15 0.0106 1.24e-15
fo SD 0.00e+00 0.2000 0.8714 6.48e-16 0.0530 1.084e-15
SEM 0.00e+00 0.0365 0.1591 1.18¢-16 0.0095 1.97e-16
Mean 0.1557 0.9832 0.0220 0.0058 0.1839 0.00e+00
f1o0 SD 0.00e+00 0.1034 0.0255 0.0086 0.2373 0.00e+00
SEM 0.00e+00 0.0188 0.0046 0.0015 0.0433 0.00e+00
Mean 0.0005 0.0167 0.1904 0.0069 1.62e-06 0.1111
f11 SD 0.00e+00 0.0237 0.6255 0.0263 5.66e-06 0.1601
SEM 0.00e+00 0.0043 0.1142 0.0048 1.034e-06 0.0292
Mean 0.0069 0.2118 0.0554 0.0007 0.0011 1.6838
fi2 SD 0.00e+00 0.0726 0.1332 0.0263 0.0027 0.4946
SEM 0.00e+00 0.0132 0.0243 0.0005 0.0011 0.0903
Best for 0/12 1/12 2/12 2/12 0/12 8/12
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TABLE II: MeanFES and SR by comparative algorithms for
functions f1; — fis.

BBO HS PSO SA BWO __IBWO
MeanFES 2613 7069 3058.03 15599.6 16 1823
f1 SR (%) 100 100 100 100 100 100
MeanFES NaN NaN 855534 455543 21023 2879
f2 SR (%) 0 0 96.67 100 100 100
MeanFES NaN NaN 875084 453316 NaN 367.4
f3 SR (%) 0 0 86.67 100 0 100
McanFES 352343 333076 16245 289756 NaN 2943
fa SR (%) 100 100 100 100 0 100
MeanFES 32561 NaN 16513 16338.1 NaN 1711
5 SR (%) 20 0 80 70 0 100
MeanFES NaN NaN 100417 409703 3685 NaN
fe SR (%) 0 0 100 100 93.3 0
MeanFES 514 FEX 39 232 793 2375
f7 SR (%) 100 100 100 100 100 100
MeanFES NaN NaN NaN NaN 13166 20532
s SR (%) 0 0 0 0 73.3 100
MeanFES NaN NaN 143869 580316 52819 P11
fo SR (%) 0 0 333 100 56.67 100
MeanFES NaN NaN 10017.5 42272.1 4762.6 3732
f10 SR (%) 0 0 30 60 16.67 100
MeanFES NaN NaN 8677.8 28846.7 2989 NaN
f11 SR (%) 0 0 30 933 933 0
MeanFES NaN NaN 10454.5 34378.1 3821.8 NaN
f12 SR (%) 0 0 43.3 93.3 66.6 0
Best for MeanFES 0/12 0/12 112 012 3/12 8/12
SR (%) 312 312 412 712 5112 912

When an algorithm cannot reach an acceptable solution over the fixed number of runs, the value is marked

as ‘NaN’.

VI. CONCLUSION

In this work, we proposed a hybrid modified version of
the BWO and PSO algorithm, dubbed MBWPSO, to opti-

45 45
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Fig. 6: Average ranking of comparative algorithms by Fried-
man test (a), and Quade test (b)

mize feature selection in the context of spectrum sensing for
wireless communications using a deep learning method. The
MBWPSO relies mainly on the excellent balance between
local and global searches. Simulation results on benchmarking
functions and feature selection in Spectrum Sensing (SS), as
a case study, showed that the proposed algorithm outperforms
the other approaches used for comparison in terms of solution
accuracy and convergence. Due to its reliability, the proposed

22



TABLE III: Mean, SEM and SD comparison for differents
SNR.

Output Class

BWO MBWPSO
Mean  4.20e-1 3.90e-1
SNR=-25dB  SD 1.46e-2 1.35e-2
SEM 4.50e-3 4.2¢-3
Mean  4.00e-1 3.80e-1
SNR=-20dB  SD 1.39¢-2 1.30e-2
SEM 4.30e-3 4.1e-3
Mean  3.80e-1 3.70e-1
SNR=-15dB  SD 1.30e-2 1.28e-2
SEM 4.10e-3 4.00e-3
Mean  6.50e-2 3.80e-2
SNR=-10dB  SD 1.32¢-3 2.20e-3
SEM 5.12e-4 4.10e-4

TABLE IV: Misclassification rate for differents SNR.

SNR (dB)
Algorithm -25 -20 -15 -10 -5
BWO 042 040 038  0.065 0
MBWPSO 039 038 037 0.038 0

Output Class

o 1
Target Class

(@)

Target Class

(b)

Fig. 7: Confusion matrices of the classification accuracy
(SNR=-10 dB) given by BWO (a), MBWPSO (b)

Output Class

Qutput Class

o

1
Target Class

(b)

Target Class

(a)

Fig. 8: Confusion matrices of the classification accuracy
(SNR=-25 dB) given by BWO (a), MBWPSO (b)

approach can be applied to railway environments with high-
Speed channels and impulsive noise.
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