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Abstract—Recent advancements in thermal device technology
present new possibilities for conveying sensations and emotions in
diverse applications. Yet, systematic investigations into the design
parameters of thermal feedback and their effects on elicited
sensations and emotions remain underexplored. To address this
gap, we created 36 thermal feedback patterns by systematically
varying the amplitude of change, rate of change, and indoor
temperature, and applied them across three body sites on the
hand, forearm, and upper arm. We then collected perceived
intensity, valence, and arousal ratings from 12 participants. The
results revealed the efficacy of the thermal design parameters.
For example, the amplitude of change served as the primary
parameter influencing the intensity and arousal ratings across
body sites, while it affected valence only when thermal feedback
was applied to the forearm and upper arm. Using the collected
data, we developed a neural network to predict the intensity
sensation and emotion ratings elicited by thermal feedback. Our
model outperformed three baseline machine learning models
and demonstrated strong alignment with non-linear sensory and
emotional responses. We present four guidelines for designing
thermal feedback and discuss implications for future research
and applications in haptic design.

Index Terms—Thermal feedback, Sensation, Emotion, Predic-
tion model, Neural network

I. INTRODUCTION

Over the last decades, thermal feedback has been integrated
into various applications and scenarios in human-computer
interaction (HCI). By delivering sensory stimuli through con-
trolled temperature changes, thermal feedback enables users
to experience realistic and immersive interactions, applied in
virtual reality (VR) [1]–[4], gaming [5], [6], medical simula-
tion [7], and automotive user interfaces [8].

Past research has explored the relationship between thermal
sensations (i.e., “cool/hot”) and various aspects of cognition,
such as social behaviors [9], interpersonal warmth [10], and
metaphors [11]. Several studies have demonstrated the ability
of thermal feedback to evoke specific emotional responses,
investigating dimensions like perceived intensity (cool to hot),
valence (unpleasant to pleasant), and arousal (calm to excit-
ing) [12], [13]. However, these studies have primarily focused
on limited body sites, such as the palm and wrist, despite
recent advancements in thermal feedback devices [14]–[16]
that extend coverage to larger areas of the arm, from the

* Both authors contributed equally to this research.

dorsum of the hand to the upper arm for immersive and
realistic applications. Furthermore, the role of indoor envi-
ronmental factors, particularly indoor temperature, in shaping
thermal feedback perception remains underexplored [17], even
though the effects of thermal feedback can depend on these
parameters.

To address these gaps, we investigated sensory and emo-
tional responses–perceived intensity, valence, and arousal–by
systematically varying the amplitude of change (AoC), rate
of change (RoC), and indoor temperature across three body
sites on the hand and arm: the dorsum of the hand, forearm,
and upper arm. Specifically, we designed 36 thermal feedback
patterns using six AoC levels (±2, 4, 6◦C), two RoC lev-
els (1, 2◦C/s), and three indoor temperatures (18, 24, 30◦C).
Next, we ran a user study to collect subjective ratings on
these patterns and analyzed how the design parameters in-
fluenced sensory and emotional ratings. For example, the
results revealed that AoC is the primary parameter affecting
intensity and arousal ratings across all three body sites, while
its influence on valence ratings was observed only for the
forearm and upper arm.

In addition to analyzing the impacts of design parame-
ters of thermal feedback, we developed a neural network to
predict user ratings and help accelerate the design process.
We designed a neural network with two hidden layers and
evaluated it on 48 unseen thermal feedback combinations,
comparing its performance against three baseline machine
learning models. Our model demonstrated state-of-the-art per-
formance, predicting intensity, valence, and arousal ratings
with an average RMSE of 5.6736 on a 0–100 scale. This
suggests that designers can effectively estimate the effects
of thermal feedback on sensations and emotions using our
model. Based on our findings, we compile design guidelines
for creating thermal feedback patterns to deliver the intended
intensity sensations and emotions and discuss future research
directions.

II. USER STUDY

A. Hardware Configuration

We designed thermal feedback system using a Peltier mod-
ule (Multicomp; MCPE-071-10-13; (W) 20.0 × (L) 20.0
× (D) 3.6 mm) for controlled heating and cooling, paired
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Fig. 1: Thermal feedback system design: (a) An exploded view
of our custom thermal feedback system. (b) A perspective view
of our actual system showing the thermistor placement.

with a thermistor (Mouser Electronics; 223Fu3122) to control
temperature changes (Figure 1 (a)). In detail, an Arduino UNO
regulated the Peltier module’s temperature by controlling the
motor driver’s duty cycle (ShenzenAV; L298n). The cover part
contained an aperture ((W) 20.0 × (L) 20.0 mm) to expose
the Peltier module, while the contact area ((W) 20.0 × (L)
18.6 mm) was limited by the slop integrated with cover. The
thermistor was located between a slop and Peltier module
to maintain the target temperature using a PID loop and to
prevent the thermistor from measuring participants’ skin tem-
perature (Figure 1 (b)). Unlike other designs, this slop provides
direct contact between the Peltier module and the participant’s
skin. A cooling fan affixed under the heat sink was used during
rest periods to dissipate residual heat, ensuring consistent
initial conditions for each trial. The body part ((W) 77.5 × (L)
68.0 × (D) 42.0 mm) housed all components within its interior
and was designed with four pillars to mitigate the transmission
of vibrations caused by the cooling fan operation. The cover
and body parts were 3D-printed using Poly Lactic Acid (PLA),
resulting in a lightweight design for the entire device (85.5 g).

B. Thermal Feedback Design

We created 36 thermal feedback patterns by varying on six
amplitude of change (AoC) values (±2, 4, 6◦C), two rate of
change (RoC) values (1, 2◦C/s), and three indoor tempera-
tures (18, 24, 30◦C). We selected these three design parameters
based on their common use in thermal feedback design (AoC
and RoC) [12], [13] and the underexplored influence of indoor
environmental factors (i.e., indoor temperatures) [17]. We also
considered balancing perception and safety to choose the AoC
and RoC values, taking into account the detection thresholds
for thermal feedback, which depend on the interaction between
AoC and RoC [18], and the pain thresholds of skin temper-
ature [19]. For instance, skin damage can occur if the skin
temperature rises above 45◦C or falls below 18◦C. We ensured
that the designed thermal feedback patterns did not produce
any pain through a pilot study with three participants. We
applied the thermal feedback on three body sites on hand and
arm (dorsum of hand, forearm, and upper arm), considering
coverage of commercial thermal feedback devices [14]–[16]
(Figure 3).

In addition to the 36 thermal feedback patterns used for
analyzing the impacts of design parameters and training a

Familiarization session

(a)

(b)

Fig. 2: A screenshot of the GUI used to collect user responses
during the user study: (a) familiarization session and (b) main
session.

predictive model, we created 16 additional patterns to serve as
a test set for model evaluation (Section III). In other words,
these 16 patterns were excluded from the analysis and model
training and were used solely for testing as unseen data. The
test set patterns varied on four AoCs (±3, 5◦C), two RoCs
(0.75, 1.5◦C/s), and two indoor temperatures (20, 28◦C). As
with the training patterns, these were applied to the same three
body sites on the hand and arm.

C. Participants

We recruited 12 participants (six females and six males; 18–
31 years old (mean:22.3, SD:1.7)). All participants reported no
impairments in thermal perception. Participants completed the
user study over five days, with each day’s experiment lasting
60 minutes on average (i.e., total duration: around five hours).
Participants received $75 USD as compensation.

D. Experiment Procedure

The user study spanned five days to examine the effects of
indoor temperature as a design parameter for thermal feedback.
We controlled the indoor temperature using a thermostat and
verified it with a thermometer. To minimize the influence of
humidity on thermal perception [17], we maintained humidity
levels around 30% using a humidifier. In other words, each
day’s experiment was conducted at a specific indoor temper-
ature, with the five indoor temperatures (18, 20, 24, 28, and
30◦C) balanced across the study.
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(a) Dorsum of hand (b) Forearm (c) Upper arm

Fig. 3: Three body sites used in the study.
Each day’s experiment consisted of three sessions: adap-

tation, familiarization, and main session. The same structure
was followed for all five days. In the adaptation session,
after obtaining informed consent, the participants received
an introduction for the experiment from the experimenter.
Specifically, we instructed the participants to use their right
hand to operate the mouse to interact with GUI program
while their left hand was secured to the hardware device for
consistent data collection (Figure 3). They then adapted to
the controlled indoor temperature for 10 minutes to reduce
external variability before proceeding to the familiarization
session [20]. In the familiarization session, the participants
experienced two extreme thermal stimuli (cool/hot) from the
stimuli set used in the main session (Figure 2a). They felt
these stimuli by clicking buttons in a GUI program. The
Peltier device’s starting temperature was set to match the
typical human skin temperature (31.13◦C to 33.77◦C), which
varied with indoor temperature ranges [21]. Each stimulus
lasted 10 seconds, followed by a 30-second break to allow
skin temperature to return to its initial resting state [13]. This
session familiarized participants with the full range of thermal
feedback patterns in a set before they moved on to the main
session.

In the main session, participants rated the perceptual inten-
sity, valence, and arousal for all stimuli in the assigned set
(Figure 2b). Each day, one of two thermal feedback pattern
sets was used under one of five different indoor temperature
conditions. Each set contained either 12 patterns (six AoC
levels × two RoC levels; train set) or eight patterns (four AoC
levels × two RoC levels; test set). The order of indoor temper-
ature conditions was randomized across days. Prior research
confirmed that thermal perception on one day does not affect
perception on subsequent days [17]. The presentation order of
body sites was also randomized using a Balanced Latin Square.
Although both train and test sets were collected during the
user study, only data from the train set were used for analysis
(Section II-E). Participants rated perceived intensity using their
own scale (−∞,∞) by entering a numeric value (negative for
cool, positive for hot) into an input field, while rating valence
(unpleasant/pleasant) and arousal (calm/exciting) using SAM
sliders [22] with 0–100 scale. Participants could play the
stimuli multiple times and take breaks as needed.

E. Results

For analysis, we normalized each participant’s intensity
rating scale to a 0–100 scale using Max-Abs scaling, where
values below 50 represent cool sensations and values above 50

TABLE I: Test results for dorsum of hand, forearm, and upper
arm, including only significant interaction effects (i.e., no
significant differences in AoC×RoC and RoC×Indoor temp.)

Ind. Variable Dep. Variable Statistic η2

Dorsum of hand

AoC Intensity F(5,385) = 333.8033, p < 0.0001 0.8126
Valence F(5,385) = 1.7488, p = 0.1225 0.0222
Arousal F(5,385) = 17.0637, p < 0.0001 0.1814

RoC Intensity F(1,385) = 0.0003, p = 0.9864 < 0.0001
Valence F(1,385) = 0.2701, p = 0.6036 0.0007
Arousal F(1,385) = 2.0148, p = 0.1566 0.0052

Indoor temperature Intensity F(2,385) = 0.0915, p = 0.9126 0.0005
Valence F(2,385) = 1.5770, p = 0.2079 0.0081
Arousal F(2,385) = 0.4005, p = 0.6703 0.0021

AoC : Indoor temperature Valence F(10,385) = 4.3060, p < 0.0001 0.1006

Forearm

AoC Intensity F(5,385) = 433.3081, p < 0.0001 0.8491
Valence F(5,385) = 6.1340, p < 0.0001 0.0738
Arousal F(5,385) = 12.9227, p < 0.0001 0.1437

RoC Intensity F(1,385) = 2.5498, p = 0.1111 0.0066
Valence F(1,385) = 0.1629, p = 0.6867 0.0004
Arousal F(1,385) = 0.0399, p = 0.8418 0.0001

Indoor temperature Intensity F(2,385) = 1.6008, p = 0.2031 0.0082
Valence F(2,385) = 2.9754, p = 0.0522 0.0152
Arousal F(2,385) = 0.5856, p = 0.5573 0.0030

AoC : Indoor temperature Valence F(10,385) = 4.7386, p < 0.0001 0.1096

Upper arm

AoC Intensity F(5,385) = 542.5301, p < 0.0001 0.8757
Valence F(5,385) = 3.2621, p = 0.0067 0.0406
Arousal F(5,385) = 21.1343, p < 0.0001 0.2154

RoC Intensity F(1,385) = 0.0349, p = 0.8519 < 0.0001
Valence F(1,385) = 0.1421, p = 0.7065 0.0004
Arousal F(1,385) = 0.0277, p = 0.8680 < 0.0001

Indoor temperature Intensity F(2,385) = 2.6363, p = 0.0729 0.0135
Valence F(2,385) = 2.0907, p = 0.1250 0.0107
Arousal F(2,385) = 7.1080, p = 0.0009 0.0356

AoC : Indoor temperature Valence F(10,385) = 7.9920, p < 0.0001 0.1719
Arousal F(10,385) = 2.1187, p = 0.0223 0.0522

represent hot sensations. The standard deviations in intensity,
valence, and arousal ratings of the 12 participants for the 36
thermal feedback patterns were 9.90, 15.79, and 17.82 (out
of 100), respectively. To examine the effects of the three
design parameters (AoC, RoC, and indoor temperature) on
intensity, valence, and arousal ratings, we conducted aligned
rank transform analysis of variance (ART-ANOVA) tests [23],
as the data did not meet the assumptions of normality and
homogeneity of variance. The tests were performed for three
dimensions (intensity, valence, and arousal ratings) and three
hand and arm sites (dorsum of hand, forearm, and upper arm).

The test results showed that AoC is the primary parameter
affecting intensity sensations and emotions across the three
body sites, except for the effects of indoor temperature on
arousal on the upper arm (Table I). AoC significantly impacted
intensity and arousal ratings across all body sites, while
influencing valence ratings for the forearm and upper arm.
However, despite the statistical significance, the effect sizes
for AoC on valence were all below 0.1, suggesting limited
practical impact [24], [25]. Post-hoc pairwise comparisons
using ART-C [26] with Bonferroni corrections showed signifi-
cant differences in AoCs for all possible pattern combinations
for intensity, 20–30% combinations for valence, and 60%
combinations for arousal. Significant differences in valence
existed for the interactions between AoC and indoor temper-
ature across all three body sites. However, for arousal, the
interaction was significant only for the upper arm, although
the practical impact was minimal (η2 < 0.1).
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(b) Female

Dorsum of hand

(c) Male

Forearm

Upper arm

(a) All

Dorsum of hand

Forearm

Upper arm

Dorsum of hand

Forearm

Upper arm

Fig. 4: Plots showing intensity, valence, and arousal ratings for each body site under varying AoC, RoC, and indoor temperature
conditions. Data was visualized for (a) all participants, (b) female participants, and (c) male participants.

The data collected from all participants showed that most
valence and arousal ratings fell within the range of 20 to 80,
suggesting that the thermal feedback patterns used in the user
study did not elicit extreme emotional responses (Figure 4
(a)). Correlations between valence and arousal ratings varied
across body sites, with values of −0.51, −0.69, and −0.52,
all with p < 0.01, for the dorsum of the hand, forearm,
and upper arm, respectively (Figure 4 (a), left). The intensity
and valence ratings exhibited weak correlations but showed
roughly symmetric distributions across the three body sites:
dorsum of the hand (r = 0.08), forearm (r = 0.24), and
upper arm (r = 0.23), all significant at p < 0.01 (Figure 4
(a), middle). For the forearm and upper arm, increasing indoor
temperature led to a shift in the relationship between intensity
and valence: as intensity increased, valence transitioned from
an increasing to a decreasing trend. For example, at an indoor
temperature of 18◦C, cooler sensations evoked more unpleas-
ant emotions, while hotter sensations evoked more pleasant
emotions. Conversely, at an indoor temperature of 30◦C,
cooler sensations evoked more pleasant emotions, while hotter
sensations evoked more unpleasant emotions. As a result, the
combined distributions formed a horizontal hourglass-shaped
pattern, which was more distinct for the forearm and upper
arm compared to the dorsum of the hand. The intensity and
arousal ratings showed ‘V’-shaped patterns across body sites
(Figure 4 (a), right).

The data divided by gender revealed differences in ratings
between females and males (Figure 4 (b) and (c)). Females
exhibited higher mean valence and arousal ratings (57.85 for
valence, 46.79 for arousal) than males (51.62 for valence,
33.45 for arousal) for the 36 identical thermal feedback pat-
terns, while mean intensity ratings remained similar between
the two groups. Standard deviations were higher for females
across all three dimensions, with differences of 1.62, 1.72, and
3.31 for intensity, valence, and arousal ratings, respectively.

Notably, females reported a wider range of valence ratings (20
to 80) compared to males (40 to 80). Similarly, female arousal
ratings typically ranged between 20 and 70, a broader range
than the male arousal ratings of 20 to 50. As a result, male
emotional ratings were primarily located in the 4th quadrant
of the valence-arousal plots across body sites. Correlations in
ratings between genders were 0.97 (intensity), 0.43 (valence),
and 0.61 (arousal), all with p < 0.01.

III. PREDICTION MODEL FOR THERMAL FEEDBACK

Using the collected sensory and emotional ratings of 36
thermal feedback patterns across three body sites, we devel-
oped a model to predict these ratings using five inputs: AoC,
RoC, indoor temperature, body site, and gender. Since body
site and gender were categorical variables, we applied ordinal
encoding to convert them into numerical values (ordinal vari-
ables): dorsum of the hand = 0, forearm = 1, and upper arm
= 2; female = 0 and male = 1.

A. Network Architecture

Despite the relatively small dataset, we employed a deep
neural network (DNN) for prediction, as the rating trends
exhibit non-linearity (Figure 4). The network consisted of two
hidden layers with 128 and 64 nodes (Figure 5). Each layer
used the ReLU activation function and included batch normal-
ization [29] and dropout [30] layers to improve generalization
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TABLE II: Comparison of RMSE values for intensity, valence, and arousal predictions across baseline models.

Method Network Intensity Valence Arousal Average RMSE
Linear Regression 4.8949 8.0944 7.7304 6.9065

Baseline Support Vector Regression Machine [27] 11.3912 7.9337 9.8112 9.7120
Random Forest [28] 7.2560 9.7557 8.7852 8.5990

Proposed Method Deep Neural Network 4.3772 6.2478 6.3957 5.6736

and prevent overfitting. The dropout rate was set to 0.3 for both
layers. The final layer outputted three values corresponding to
intensity, valence, and arousal ratings, each on a scale of 0–
100.

B. Implementation

We implemented the DNN using PyTorch [31] and trained it
on an NVIDIA RTX 2080 Ti GPU. The model was optimized
with Adam (weight decay = 1e-5) using MSE loss, a batch
size of 32, and a learning rate of 0.001 for 1000 epochs. Five-
fold cross-validation was applied to ensure robust and reliable
performance.

C. Evaluation

We evaluated the performance of our model against three
baseline machine learning models using 48 unseen thermal
feedback combinations (four AoC levels × two RoC levels
× two indoor temperatures × three body sites). The baseline
models included Linear Regression, Support Vector Regres-
sion Machine [27], and Random Forest [28]. All baseline
models were trained on the same thermal feedback patterns
as our model.

D. Results

Our DNN model outperformed the three baselines across
intensity, valence, and arousal ratings, achieving the lowest
averaged RMSE (5.6736) (Table II). While Linear Regression
performed reasonably well on the test set (RMSE = 6.9065),
it failed to capture the nonlinearity in the data effectively
(Figure 6 (a)). In contrast, our model successfully captured the
nonlinearity, producing horizontal hourglass-shaped predic-
tions for intensity-valence ratings and ‘V’-shaped predictions
for intensity-arousal ratings (Figure 6 (b)).

IV. DISCUSSION

Based on our study and model evaluation results, we present
four design guidelines for creating thermal feedback patterns
and discuss implications for future research and applications.

A. Design Guidelines

1. The amplitude of change (AoC) is the most effective
design parameter, especially for the forearm and upper
arm. AoC significantly influenced perceived intensity and
arousal across all three body sites (Table I). These findings
suggest that the AoC values (±2, 4, 6◦C) used in the study
were sufficient to effectively impact these ratings, given the
discrimination thresholds for AoC (0.025–1.3◦C for cooling
and 0.01–3.3◦C for warming [32]–[34]). In addition, AoC
modulated valence on the forearm and upper arm, though with
small effect sizes, making these sites ideal for generating a
wide range of user experiences. We conjecture that the lower
just noticeable difference (JND) at the forearm and upper

arm, compared to the JND at the hand [12], [34], along with
differences in activation patterns between the hand and arm
in response to emotional experiences [35], may explain the
observed body site effects. Future work should investigate the
effects of body sites on valence in greater depth.

2. The rate of change (RoC) over 1◦C/s is not an
effective parameter for human sensations and emotions.
Our analysis did not reveal significant impacts of RoCs (1 and
2◦C/s) on sensations or emotions across the three body sites,
based on both statistical results and visualizations. Given that
only RoC values slower than 0.1◦C/s influenced the thermal
perception threshold [36], the RoC values used in our study
may be too fast to affect intensity and emotional ratings.
However, employing RoC values slower than 0.1◦C/s may
not be practical for real-world applications that require rapidly
conveying information to users via thermal displays. There-
fore, designers can fix the RoC values over 1◦C/s according
to the technical capabilities of their thermal feedback devices
and instead focus on adjusting other parameters to enhance
the user experience.

3. Designers should create thermal feedback patterns
while considering that the effects of AoC on emotions can
depend on indoor temperature. Interaction between AoC and
indoor temperature had significant impact on valence across
three body sites on the hand and arm (Table I). Moreover, we
also observed that the positive relationship between valence
and intensity at 18◦C diminished as the indoor temperature
increased to 24◦C, eventually turning negative at 30◦C (Fig-
ure 4 (a), middle). This effect was more pronounced on the
forearm and upper arm compared to the dorsum of the hand.
These findings suggest that while indoor temperature may not
need to be a major consideration when designing feedback for
the hand, designers should carefully account for its effects on
emotion for the arm.

4. Consider gender differences in thermal feedback
effects on valence and arousal. Although gender is known
not to influence thermal thresholds [37], the thermal feedback
patterns used in our study formed distinct distributions in
emotional space between females and males (Figure 4 (b)
and (c)). These results suggest that psychological gender
differences play a role, aligning with findings reported in [38].
Similar to the literature, our study showed that males exhibited
greater thermal comfort than females (valence: 51.62 (F) vs.
57.85 (M)), while females tended to express greater dissat-
isfaction with the thermal feedback (valence range: 20–80
(F) vs. 40–80 (M)). Additionally, males reported lower mean
arousal ratings (arousal: 46.79 (F) vs. 33.45 (M)), possibly
due to their stronger thermal regulation ability in transient
environments [38]. These differences led to moderate to strong
correlations in emotions between genders (valence: r = 0.43,
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(a) Linear Regression

(b) Our model (DNN)

Train set Test set

Fig. 6: Prediction results of (a) Linear Regression and (b) our model on the training and test datasets. Our model successfully
captures the nonlinear trends in the data.

arousal: r = 0.61) compared to a very strong correlation in
intensity sensation (r = 0.97). Thus, designers should consider
both physiological and psychological gender effects when
creating thermal feedback patterns to provide personalized user
experiences.

B. Implications for Future Work

We outline how our systematic investigations and prediction
model can inform future research and influence haptic design
practices.

Designers can use our guidelines and the proposed
model to estimate intensity sensations and emotions when
prototyping new thermal feedback patterns. Investigating
sensory and emotional responses to new thermal feedback
patterns can be time-consuming for designers. Our guidelines
provide insights into the efficacy of design parameters–AoC,
RoC, indoor temperature, and gender–across three body sites
on the hand and arm, based on statistical analysis and visual-
izations. Additionally, our model demonstrated a low RMSE
(5.6736) when predicting sensory and emotional ratings (on a
0–100 scale) for unseen thermal feedback patterns. This allows
designers to quickly estimate the sensations and emotions
elicited at specific body sites by inputting five values: AoC,
RoC, indoor temperature, body sites, and gender. Future work
could expand the model by incorporating additional design
parameters, such as the area of stimulation [18], and extending
its application to other body sites, enabling rapid prototyping
across a broader range of thermal feedback designs.

Our model can inform the development of future
computational models to predict sensations and emotions
conveyed by diverse haptic stimuli. Recent research has
proposed computational models to predict various subjective
attributes of haptic stimuli, such as the perceptual dissimilarity
of vibrotactile icons (i.e., Tactons) [39] and tactile attributes
of textured surfaces [40]. Our work contributes to this field
by enabling the prediction of thermal perception based on five

input values of AoC, RoC, indoor temperature, body site, and
gender. Future research can extend our approach beyond static
conditions to incorporate dynamic contexts, considering the
influence of proprioception on thermal perception. In addition,
with the growing integration of thermal feedback into both
traditional haptic technologies, such as force feedback and
mechanical vibrations, and emerging technologies, such as
electrovibrations [41] and mid-air ultrasound vibrations [42],
future work could focus on developing computational mod-
els for multimodal feedback. Examples include mechanical
vibration-thermal feedback [43] and mid-air vibration-thermal
feedback [44], which have the potential to create more immer-
sive and dynamic haptic experiences.

V. CONCLUSION

Thermal feedback presents new opportunities for conveying
sensations and emotions across diverse applications and sce-
narios. In this work, we designed thermal feedback patterns
and conducted a user study, resulting in design guidelines and
a deep neural network model capable of accurately predicting
user sensations and emotions. We hope that our guidelines and
model will enable designers to craft rich and engaging user
experiences, fostering creativity and driving advancements in
the application of thermal feedback within haptic design.
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