
  

  

Abstract— Touch perception of chemical heterogeneities was 
studied using silane-based surface coatings to create a chemical 
‘edge’ on silicon wafers on otherwise low roughness (< 0.8 nm ) 
surfaces. Participants were able to reliably find and mark the 
chemical heterogeneity when sliding their fingers from a region 
of C4 into a region of APTMS, and equivalently successful 
when in the reverse sliding direction of APTMS into C4. 
However, participants could only accurately locate the ‘edge’ 
when sliding their finger from a region of C6 into C4 and not in 
the reverse direction of C4 into C6. Mechanisms to explain this 
anisotropy were explored based on soft sliding friction 
phenomena.  

I. INTRODUCTION 

Physical heterogeneities in the form of bumps, textures, or 
surface roughness are well known to contribute to the tactile 
feel of an object [1]–[3]. Consider a square of paper sitting 
on a table: as the finger encounters a physical ridge of the 
paper, mechanical forces generated by this physical 
heterogeneity give rise the sensation of the ‘edge’ of the 
paper [4], [5]. However, in addition to physical 
heterogeneities, objects also contain chemical 
heterogeneities: differences in the degree of fiber alignment 
in the pulp of the paper, presentation of different surface 
moieties, the varying degrees of uniformity in any coating 
process on the paper and leather [6], [7]. While the role of 
physical heterogeneities on tactile sensations has been 
studied often [8]–[10], it is unclear how chemical 
heterogeneities may impact the tactile feel of objects or how 
chemical heterogeneities may be leveraged to improve 
tactile interfaces [11]–[15]. 

II. HUMAN PSYCHOPHYSICAL TESTING 

  
Figure 1. Human psychophysical testing setup. a) Schematic showing 
participants sliding their fingers from the first silane into the second, 
marking the hypothesized location of the chemical heterogeneity, and 
measuring the distance (d) to the real location. b)  Schematic showing 
reversal of sliding direction, variation of ‘edge’ location, and silane 
chemistries for Sets 1 and 2. 
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A. Method 
Silicon wafers were coated with two different silanes to 

generate an ‘edge’ (Fig. 1b), Set 1 was comprised of n-
butyltrichlorosilane (C4) and n-
aminopropyltrimethoxysilane (APTMS) whereas Set 2 was 
comprised of n-butyltrichlorosilane (C4) and n-
hexyltrichlorosilane (C6). 

This study was conducted and approved by the 
Institutional Review Board of the University of Delaware 
(Project #1484385-7). Once familiarized, subjects were 
given 12 samples from set one (6 of each sliding direction) 
and asked to touch and mark where they thought the ‘edge’ 
was on each wafer within 30 seconds (Fig. 1a). This was 
then repeated with the second set for each of the six 
participants. Counterbalancing was used to eliminate order 
effects when testing both sliding directions within a set. 
Additionally, the set presented first was alternated between 
each participant. Upon completion the performance was 
evaluated by measuring the distance (d) between the actual 
‘edge’ and the participant’s mark.  

B. Results 
The apparent contact area of the fingertip (≥ 10 mm2) is 

much larger than the size of chemical heterogeneity [16], 
[17]. Thus, if a subject’s mark was less than 10 mm from the 
true location the trial was marked as a “success”. Fig. 2 
shows the average success rates for sets 1 and 2. In Set 1, 
participants on average passed similarly regardless of sliding 
direction. The pass rate when sliding from C4 into APTMS 
was 77.8% and 75.0% in the reverse, APTMS into C4. 
However, in Set 2, directional anisotropy was observed. The 
pass rate was significantly decreased when sliding from C4 
into C6 as compared to C6 into C4, 38.9% and 66.7% 
respectively. 

 
Figure 2. Results of psychophysical testing with human subjects. Error bars 
indicate standard error of the mean. Asterisks represent significance. Each 
condition had 6 trials with n = 6 subjects. 
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III. MECHANISM FOR ANISOTROPY  

 
Figure 3. Friction forces across the chemical ‘edges’. a) Representative 
friction traces across a chemical heterogeneity creating positive, horizontal, 
and negative slopes. b) Friction force trends at the chemical heterogeneity 
for Set 1 and Set 2 in each sliding direction at M = 0-100 g added to the 
deadweight of the finger and v = 5-45 mm/s. Each of the 16 mass and 
velocity conditions were run in triplicate. 

To understand the basis of this anisotropy  mesoscale 
friction of each condition was explored using a mock finger. 
Though we identified many trends, the only trend that 
identified C4 into C6 as a unique surface was that friction 
forces tended to decrease across the ‘edge’, whereas all other 
surfaces showed a rise. 
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