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I. INTRODUCTION

Touchscreens are widely used in modern devices but often

lack tactile feedback, limiting the ability to convey the sense

of touch for digital objects. Surface haptic technologies—

particularly electrovibration—offer a promising solution for

this challenge. Electrovibration occurs when a high-voltage

signal is applied to a conductive surface with a dielectric

layer, such as a capacitive touchscreen, generating an electric

field that induces an attractive force between the finger and

the screen. By modulating this force, different texture sen-

sations can be simulated on touchscreens through frictional

variations perceived during finger movement.

While electrovibration can potentially recreate the real

textures feel on touchscreens, it is limited by a large number

of real-world textures. Natural bare-finger interactions with

real surfaces produce rich frictional signals, which are at-

tempted to be replicated via electrovibration displays with

the recorded friction signals as voltage inputs. However,

capturing raw friction data for every possible surface is

costly and labor-intensive, requiring specialized equipment

and significant manual effort. Moreover, these recorded sig-

nals often contain perceptually redundant information and

vary depending on the finger’s normal force and exploration

speed. Accounting for these dynamic variations adds an-

other layer of complexity to accurately reproducing texture

sensations. Consequently, researchers are exploring ways

to parameterize the recorded interaction signals, aiming to

simplify the texture rendering and enable the generation of

novel textures from compact, interpretable representations.

Early texture modeling studies used autoregressive (AR)

coefficients to parametrize tactile interaction data [1]. How-

ever, these coefficients are specific to each texture and explo-

ration condition, limiting the generalizability of this method

for unknown surfaces. Another approach uses Mel-frequency

cepstral coefficients (MFCCs) [2] to model texture signals,

offering flexibility to author new textures by interpolating

the coefficients. However, MFCCs were originally designed

for audio feature extraction, with frequency scales weighted

according to auditory bandwidth (Mel-scale), not tactile per-

ception. Fielder and Vardar [3] addressed this challenge by

using key peak frequency components from texture spectra

to recreate signals. However, the success of this method

depends on the number of selected peak components, which

can vary for different textures.
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Here, we propose two new texture representations: spectral

slope and beta representation (see Fig. 1). These represen-

tations address the limitations of prior techniques, which

require selecting the necessary number of peak components

varying for texture types [3] or rely on complex, high-

dimensional data that lack generalization [1], [2]. We evalu-

ated existing and proposed methods in terms of their ability

to capture the original recordings and preserve the perceptual

similarity under electrovibration. Our goal is to develop

simpler, low-dimensional models that retain the perceptual

essence of textures. Furthermore, we aim to understand

which new representations best balance simplicity, perceptual

realism, and generalizability.

II. METHODS

A. Texture representations

The spectral slope method models the shape of a texture’s

magnitude spectrum by estimating its slope, which is then

used to determine the order of low-pass and high-pass filters

that together form a narrow band-pass filter centered at

the spectral peak. This filter is applied to white noise to

synthesize the texture signal.

The beta representation approximates the magnitude spec-

trum using a skewed beta distribution, reflecting the natural

shape of many texture spectra. The distribution’s shape

parameters α and β are used to design a filter that also

operates on white noise to reconstruct the signal.

B. Texture Rendering and Evaluation

We recorded finger-surface interaction data from three

surfaces using a custom setup with two ATI Nano 17 TI 6-

axis force sensors mounted on an aluminum base and placed

on an optical table. The surfaces—sandpaper, fabric, and

corrugated paper—were cut to 100×100 mm squares and

adhered to an acrylic base positioned on the force sensor.

The first author scanned the surfaces at a constant speed

of 80 mm/s and 0.4 N force. Contact forces were recorded

at 20 kHz by a PCIE-daq (NI 6323). For texture rendering,

we used a 70×30 mm touchscreen (3M SCT3250) placed on

force sensors, with a Tabor 9200a high-voltage power supply

connected to the PCIE-daq to excite the touchscreen.

An impact hammer test characterized the setup as a fourth-

order system. The recorded signals were compensated for

the setup’s response, bandpass filtered (20–1000 Hz), and

modeled using five representation methods. The model out-

puts were convolved with an inverse first-order response [4]

to account for finger–electrovibration behavior and later

amplitude-modulated with a 7 kHz carrier after taking the

envelope’s square root [3].
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Fig. 1. Illustration of textures used in the study and their rendering process. The recorded friction signals were trimmed to 1 second, filtered, and modeled
using spectral methods and beta representation. Then they were modulated for rendering on an electrovibration display.
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Fig. 2. Bar graphs with standard errors showing preliminary results averaged across two participants. (a) Pearson correlation between the recorded friction
magnitude spectra of textures rendered using the representations and the real texture. (b) Percentage similarity of the rendered signals through selected
representations—Autoregression (AR), Mel-frequency cepstral coefficients (MFCCs), Spectral Peak, Beta representation, and Spectral Slope—to the signals
represented with AR. Similarity was calculated by normalizing each participant’s Likert scale ratings based on their maximum score.

We first evaluated how well each texture representation

captured information from the original recordings. To do this,

we calculated Pearson’s correlation between the magnitude

spectra of the originally recorded friction signals and those

generated by each representation as participants slid their

fingers over the electrovibration display during rendering.

Next, we compared MFCC, spectral peak, beta represen-

tation, and spectral slope methods’ ability to preserve the

textures’ perceptual essence, using the AR representation as

a reference, as its output— before rendering— exhibited the

highest spectral correlation with recordings from real sur-

faces. Two participants rated the similarity between textures

rendered with each representation and those rendered with

AR using a 7-point Likert scale. AR was also compared

with itself as a control. The participant slid their index

finger across the screen at 80 mm/s and 0.4 N normal

force and provided a similarity rating using a 7-point Likert

scale. In total, 45 trials were conducted (5 representations×3

textures×3 repetitions). Each trial consisted of two sections:

in the first, the texture rendered with the AR representation

was presented, followed by the texture rendered with one of

the other methods. The order of both texture representations

and textures themselves was randomized. After the experi-

ment, the resulting similarity percentages were calculated by

dividing the average Likert scale rating across repetitions by

the maximum rating value.

III. RESULTS AND DISCUSSION

Figure 2 summarizes the evaluation results. AR showed

high spectral correlations (R > 0.7) and over 75% percep-

tual similarity. Slight differences in finger mechanics and

exploration can explain the marginally lower correlation and

similarity. MFCC had spectral correlations above 0.67 across

textures, with low perceptual similarity between 25% (paper)

and 57% (fabric), likely due to its mel-scaled filter banks.

Spectral peak correlations ranged from 0.5 to 0.65, with

low perceptual similarity between 32% (sandpaper) and 43%

(fabric) due to its reliance on a few peak frequencies, thus

missing finer texture details. Beta representation had spectral

correlations between 0.68 and 0.72, with perceptual similar-

ity from 50% (fabric) to 81% (sandpaper). This method cap-

tured the overall spectral envelope but inconsistently altered

mid-range frequencies, negatively affecting other textures

whose friction signal showed high stationarity, like paper

and fabric. The spectral slope had a spectral correlation of

0.7 across textures, with perceptual similarity of 35% (fabric)

and 75% (sandpaper). The low similarity is due to its single

cutoff frequency suppressing secondary peaks.

In the future, we aim to improve the performance of the

Beta representation technique to capture the texture better.

Additionally, we plan to include a more diverse set of

textures in future work.
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