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I. INTRODUCTION

The integration of collaborative robots in manufacturing
facilities has increased collision risks between humans and
robots, posing significant safety threats to workers [1]. To en-
sure safety, workers typically set high collision detection sen-
sitivity, particularly in environments with frequent human-
robot interactions such as food manufacturing. However, this
heightened sensitivity often causes unintended emergency
stops triggered by the robot’s operational vibrations.

To address this issue, we conducted a study to dis-
tinguish between task-induced vibrations generated by the
robot’s operations and human collision vibrations during
collaborative tasks. In particular, we measured vibrations
in the form of acoustic signals using a microphone [2] to
distinguish between the robot’s operational vibrations (Fig.
1(a))–occurring while the robot arm, holding a basket with
food items, shakes off the frying oil after lifting the basket
from a deep fryer–and the vibrations transmitted to the
robot arm due to collisions with parts of a worker’s body
(Fig. 1(b)). After systematic labeling of the three types
of acoustic events (task-induced vibrations (TV), Collisions
with a human(COL) and no-vibration situations (NV)), we
analyzed their characteristics by applying Short-Time Fourier
Transform (STFT)-based spectrogram analysis [3].

II. MATERIALS AND METHODS

A. Experimental Setup

For the testbed, we utilized deep frying equipment com-
bined with a Doosan Robotics A0509 collaborative robot
arm (Fig. 1(a)). The robot arm is mounted on top of the
deep frying equipment and is designed to repeatedly deep fry
food items using a basket. To measure the acoustic signals
generated by vibrations, we attached a microphone at the
point on the robot arm where the signals could be effectively
transmitted [4], as shown in Fig. 1(c).

The acoustic signals transmitted to the surface of the
robot arm were recorded using a microphone and stored
on a Raspberry Pi 5. To ensure compatibility, an Adafruit
I2S MEMS Microphone was used and wired directly to the
Raspberry Pi [5]. Additionally, to minimize external noise
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Fig. 1. Experimental Setup: (a) Task-induced vibrations, (b) Collisions
with a human, and (c) Sensor installation on robot arm

interference and maximize the recording of surface vibrations
from the robot arm, the microphone element was wrapped
with insulating tape [6]. Finally, the insulated microphone
was glued to the location on the robot arm where the
transmission of vibrations from the three different types of
acoustic events could be most effectively captured.

B. Data Collection

The robot arm performs a pre-programmed operation for
deep frying food. During a single operation, the robot arm
shakes the basket containing the food approximately 51
times, which is considered task-induced vibrations. To incor-
porate collision with a human, a worker wearing protective
gear made strong contact at various locations on the robot
arm with a fist during the middle of the operation. As a
result, each operation includes approximately 51 instances
of task-induced vibrations and 5 to 8 instances of intentional
human collision vibrations. The measured acoustic signals
are recorded as 48 kHz WAV files, with each operation
generating about 100 seconds of data. This experimental
protocol was repeated 50 times to produce a large dataset.

C. Data Refinement

Each raw WAV file obtained from a single deep frying
operation comprises three distinct categories of acoustic
events: task-induced vibrations caused by the robot’s basket-
shaking motion, human collision vibrations, and no-vibration
events. Initially, we converted the raw acoustic signals
into spectrograms using the Short-Time Fourier Transform
(STFT) to represent the power distribution of frequencies
over time, enabling the identification of differences in the
acoustic power spectrum patterns between different vibration
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Fig. 2. Spectrograms of acoustic signals: (a) Task-induced vibrations (TV)
and (b) Collisions with a human (COL). Red dashed lines indicate peak
moments.

types. For instance, the pattern of task-induced vibrations
from basket shaking produces a spectrogram as shown in
Fig. 2(a), whereas the spectrogram resulting from collisions
with a human is depicted in Fig. 2(b).

Subsequently, we systematically annotated the spectral
patterns through manual labeling based on visual inspection.
Task-induced vibrations were labeled as ”1” and those related
to collisions with a human were labeled as ”2”. For instance,
the red-dashed vertical line in Fig. 2(a) is labeled as ”1”,
while the one in Fig. 2(b) is labeled as ”2”. The remaining
spectral segments over time, where no-vibration activity
occurred, were assigned a label of ”0.”

D. Conversion of Spectrogram Data from Time Domain to
Frequency Domain

As there are clear differences in the acoustic power
spectrum among the three acoustic categories, we further
quantified these differences by transforming the time-domain
spectrogram data to the frequency domain. Specifically,
amplitude distributions across frequency were extracted from
22 spectrogram data points for each category. The results for
task-induced vibrations (labeled as ”1”) are represented by
sky-blue colored lines in Fig. 3, with their mean distribution
shown in blue. Collisions with a human (labeled as ”2”) are
plotted in light-orange and orange.

III. PRELIMINARY RESULTS AND DISSCUSSION

The frequency responses exhibited distinct distribution
differences among the three acoustic categories, as shown
in Fig. 3. Task-induced vibration demonstrated significantly
lower variability than collisions with a human, with the light-
blue shaded area showing a narrower amplitude range than
the light-orange area. This consistency reflects the robot’s
repetitive basket-shaking motion, while the larger variation
in human collisions results from varying impact locations
and magnitudes. No-vibration situations showed minimal
amplitude variation, representing baseline conditions.

Operational vibrations exhibited a characteristic peak
around 700 Hz, corresponding to the metal basket-gripper
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Fig. 3. Frequency response comparison by collision types (0-2000Hz).
Shaded areas indicate ±1 standard deviation.

contact. Conversely, collisions with a human showed higher
amplitude values in the low-frequency range due to the soft
tissue-metal collision characteristics, resulting in stronger
mid-to-low frequency components.

IV. FUTURE WORK

The frequency response analysis revealed distinct patterns
among the three acoustic categories (task-induced vibrations,
collisions with a human, and no-vibration situations), indicat-
ing the feasibility of classification using a one-dimensional
neural network approach [7]. The systematically labeled
frequency-domain data, representing the amplitude distribu-
tion across frequencies, will serve as the training dataset for
classifying the collision type.
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