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I. INTRODUCTION

Human mechanoreceptors are activated by skin deforma-
tion, producing cutaneous sensations. Merkel cells (SA1) are
thought to be particularly responsive to strain energy density
(SED). Thus, knowledge of subcutaneous SED is important
not only for analyzing skillful actions based on cutaneous
sensation, but also for achieving convincing haptic displays.

There have been several attempts to present tactile sen-
sations based on SED in the fingertips. Sato et al. [1]
calculated SEDs within the skin using offline finite element
simulations and used the results to achieve real-time SED-
based electrotactile stimulation. In that study, the skin was
represented by a simple 2D model. Sase et al. [2] developed
a 3D finite element model of a fingertip and performed real-
time calculations to obtain the SED distribution within the
skin. However, the 3D model of the finger was simplified
to enable real-time simulation, which likely reduced the
accuracy of the SED estimation.

Therefore, this study aims to develop a learning-based
method to estimate subcutaneous SED distributions from
surface pressure data, by utilizing a high-fidelity 3D fingertip
model and deep learning techniques. The results of this
study are expected to be beneficial for SED-based haptic
displays in situations where only skin surface pressure can
be computed in VR simulations, and for the analysis of
mechanoreceptor activity when pressure distribution mea-
surements in real-world environments are available.

II. METHOD

A. Overview

To estimate the subcutaneous SED using machine learning,
a large amount of data must be collected. Since measuring
subcutaneous SED directly is extremely difficult, simulation
software is employed for data collection. To obtain valid
data, a finite element (FE) model that accurately reproduces
the mechanical properties of the human finger is required.
Using this FE model, we collect pairs of surface pressure
and subcutaneous SED distributions under various contact
conditions.

The collected data pairs are then preprocessed and con-
verted into image pairs, which are subsequently used to train
machine learning algorithms. This task can be formulated as

*This work was supported by JSPS KAKENHI Grant Numbers
JP21H04542 and JP22K17936.

1K. Sase is with Faculty of Engineering, Tohoku Gakuin University,
Sendai, Japan e-mail:sase@mail.tohoku-gakuin.ac.jp

2M. Konyo is with Graduate School of Information Sciences, Tohoku
University, Sendai, Japan

B

E D

A

C

(b)(a)
x

y
z

Fig. 1. Finite element model of the finger. (a) The finger model and a
rigid plane. (b) Cross-sectional view of the model (A: nail, B: bone, C:
subcutaneous tissue, D: dermis, E: epidermis).

u u
vv

(a) Pressure measurement area (b) SED measurement area

Fig. 2. UV mapping of the measurement areas for pressure and SED.
The blue regions indicate the measurement areas. Pressure is measured on
the surface (epidermis), while SED is measured at the dermis–epidermis
interface.

an image-to-image regression problem, allowing the appli-
cation of existing deep learning-based methods.

B. Data Collection

We first constructed a fingertip FE model that considers the
anatomical structure. The shape of the fingertip was extracted
from a commercially available 3D human model (Zygote,
Inc., adult male solid model). The internal volume of the
fingertip was meshed into tetrahedral elements using Altair
SimLab. Fig. 1 shows an overview and a cross-sectional view
of the developed model. The model consists of the epidermis,
dermis, subcutaneous tissue, bone, and nail. The thicknesses
of the epidermal and dermal layers, as well as the material
properties, were determined based on the work of Maeno et
al. [3].

The nonlinear finite element analysis software Marc (Marc
Mentat 2024.2, Hexagon) was employed for data collection.
A rigid square plate measuring 20mm × 20mm was pressed
against the finger pad from various angles. The maximum
displacement of the plate was approximately 2.0mm. Simu-
lations were conducted using frictionless static large strain
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Fig. 3. Simplified U-Net architecture.

analysis. Among the analysis results, particular attention was
given to the pressure values within the pressure measurement
area and the SED values within the SED measurement
area (both indicated as blue regions in Fig.2). The SED
measurement area corresponds to the interface between the
epidermis and dermis, where mechanoreceptors are located.

The two measurement areas were each unwrapped into
2D representations as UV maps. Angle-based unwrapping,
as implemented in the software Blender, was employed. The
pressure and SED values were mapped to each vertex of the
mesh in the UV map. The vertex values were then linearly
interpolated to represent continuous distributions over the
mesh. Each value was stored as the intensity of a pixel, and
the data were converted into 224 × 224 grayscale images.
Pixels outside the mesh region were assigned an intensity
value of zero. All image intensities were normalized by the
maximum value across the entire dataset.

C. Machine Learning Method

For the image-to-image regression task, we employed a
simplified implementation of U-Net [4]. U-Net consists of
an encoder–decoder structure with skip connections between
corresponding layers. The input and output images are of the
same size, and it is reported that high performance can be
achieved even with a relatively small dataset. Although the
original network may be too large for practical use in haptic
displays, a simplified version of U-Net was adopted in this
initial study due to its high accuracy.

The simplified U-Net architecture consists of two encoding
and two decoding stages, each comprising two 3×3 convolu-
tional layers followed by ReLU activations (Fig. 3). Down-
sampling is performed using max pooling, while upsampling
is achieved via transposed convolution. Skip connections link
the encoder and decoder at each corresponding level. The
network takes a single-channel 224×224 input image and
outputs a single-channel prediction of the same resolution.
The mean squared error (MSE) is used as the loss function,
and the network parameters are optimized using the Adam
optimizer with a learning rate of 1×10-3.

Input (pressure) Target (SED) Predicted (SED)

Fig. 4. Example of SED distribution prediction.

III. RESULTS

We collected 1000 data samples, converted them into
grayscale images, and conducted U-Net training. Eighty
percent of the samples were used for training, and the
remaining 20% were used for testing. A steady decrease in
losses was observed, indicating that the network possesses
sufficient learning capability. Fig. 4 presents an example of
the prediction results. Note that in this image, the background
has been replaced with white for better visibility, and the
intensity values are represented using a color map.

As an overall trend, the predictions reproduced the target
images well. Because the SED measurement points are
located subcutaneously, surface pressure deformations result
in a more widespread subcutaneous SED distribution. This
tendency was generally well captured by the model. How-
ever, in some cases where the true SED distribution extended
broadly toward the nail base, the predicted distribution did
not adequately reproduce the overall spread.

IV. CONCLUSION

In this study, we developed a method to predict the subcu-
taneous SED distribution from the surface pressure distribu-
tion of the finger, with the aim of facilitating the prediction
of mechanoreceptor responses during object manipulation.
Data were collected using finite element analysis (FEA)
software, and SED was estimated through image-to-image
regression employing a simplified U-Net implementation.
Although the learning model demonstrated sufficient learning
capability, challenges remain in accurately reproducing SED
distributions over a wide area.

Future work will focus on enhancing the diversity of
the collected data and optimizing the model for real-time
inference to further improve prediction accuracy.
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