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I. INTRODUCTION

Wearable haptic devices enable expressive and engaging
communication by delivering rich tactile sensations to the
skin, including new contacts, variable pressure, and broad-
bandwidth vibrations [1]. Among these, the start and end
of contact are particularly salient and emotionally engaging,
yet this kind of haptic feedback has rarely been used in
wearable systems [2]. Our cutaneous electrohydraulic (CUTE)
devices (Fig. 1) offer an electrically driven platform capable of
rendering a wide range of sensations including contact/no con-
tact feedback, slowly changing pressure, and high-frequency
vibrations up to 500 Hz [3]. This new soft actuation approach
offers unprecedented control over the tactile sensations that
can be presented, with users achieving almost perfect cue
recognition and rating almost all sensations as pleasant [3].

While novel haptic actuation systems promise richer haptic
feedback, the consistent delivery of haptic cues over time and
across users remains a challenge in numerous applications
ranging from virtual reality to wearable consumer devices. Ac-
tuator characterization is often performed in benchtop settings,
which cannot account for user-specific variability. As a result,
identical control signals often lead to differing perceptual
outcomes on the final system worn by the user, diminishing
the predictability and utility of haptic feedback. For example,
vibrotactile stimuli change systematically with strap tightness,
anatomical mounting site, and user body composition [4]. For
contact feedback, the instant at which an actuator starts to
touch the skin depends not only on the command but also on
how it is presently mounted to the user’s body.

To provide reliable haptic feedback, CUTE wearable devices
would greatly benefit from incorporating real-time estimation
of both actuator-skin contact and the force applied to the
skin. Measuring contact would enable closed-loop control over
actuation timing and intensity and would also allow for dy-
namic adaptation to individual users, detection of poor device
fit, and adjustment of haptic feedback to maintain perceptual
consistency. The capacitance of electrohydraulic actuators has
been used to estimate actuator displacement [5]; however,
capacitance measurements are not sufficient to directly predict
forces in a broad-bandwidth wearable haptic device due to
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Fig. 1. Contact state in a CUTE device across different actuation voltages.

the multi-variable nature of the force-displacement behavior
in soft devices, which can depend on the mounting conditions,
skin mechanics, and the actuator’s non-linear dynamics.

In this work, we present a learning-based framework for
real-time contact detection and force estimation in soft cuta-
neous electrohydraulic actuators. Two neural networks were
trained to predict either binary contact states or continuous
force values using input voltage and historical actuator ca-
pacitance under different actuator mounting conditions. Our
results demonstrate reliable contact detection and promising
force estimation, supporting the feasibility of this approach
for future real-time implementation in wearable haptics.

II. MATERIALS AND METHODS

A. Data Collection and Processing

To develop and evaluate our learning-based framework for
contact detection and force estimation, we collected a dataset
comprising input voltage, actuator capacitance, and corre-
sponding normal force measurements against a rigid surface.
As shown in Fig. 2, a rigid plate was mounted on an ATI
Nano17 force sensor, positioned at a variable height d above
the actuator. We recorded six custom haptic cues (Fig. 3)
lasting 5 s each, under four different mounting distances d
(9.7–12.7 mm) to simulate a range of contact conditions.
This process yielded a dataset of 24 unique trials representing
diverse actuating signals and mounting configurations.

The time-varying actuator capacitance was computed across
each recording by analyzing the magnitude change and phase
shift between an imperceptible 1000 Hz sinusoidal AC voltage
signal (50 V peak-to-peak) superimposed on the 6 kV actu-
ating signal and the current measured across a shunt resistor,
following the method described by Acome et al. [5].
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Fig. 2. Experimental setup for data collection.

Fig. 3. Voltage signals for the six haptic cues in the dataset.

B. Model Architecture and Training

Two lightweight feedforward neural networks were im-
plemented to perform either binary contact classification or
continuous force regression, respectively, at a sampling rate of
10 Hz. Each neural network receives a five-dimensional input
vector consisting of the present input voltage and four his-
torical capacitance measurements to capture temporal actuator
dynamics based on the most recent 400 ms time window. The
classification model comprises a fully connected hidden layer
with three neurons and a tanh activation function, followed
by a two-neuron softmax output for binary prediction of the
contact/no contact state. Similarly, the regression network in-
cludes a single fully connected hidden layer with three neurons
and a tanh activation function, followed by a single-neuron
output layer to produce a continuous estimate of the contact
force. We intentionally used minimal network complexity to
reduce the risk of overfitting on our relatively small dataset
and to support future deployment in real time on resource-
constrained hardware.

The dataset was split into training (75%), validation
(12.5%), and test (12.5%) sets, ensuring no overlap of trials
across splits. For contact labeling, we used a threshold of
0.02 N to define ground-truth contact events. A decision
threshold of 0.45 was selected for the classifier based on the
peak F1-score on the validation set.

III. RESULTS

As shown in Fig. 4, the binary classifier achieved 95.6%
accuracy in identifying ground-truth contact events and 99.0%
accuracy in detecting non-contact states. These results demon-
strate the capacity of our approach to provide good general-
ization across variations in mounting height and haptic signals
that emulate inter-user variability in wearable settings.

Fig. 4. Confusion matrix for contact classification.

For contact force estimation, the regression model achieved
a root mean squared error (RMSE) of 0.26 N across contact
events. This RMSE corresponds to approximately 13% of
the maximum measured forces in the dataset, demonstrating
the potential of this method for real-time force estimation
in wearable soft electrohydraulic devices and highlighting its
ability to generalize effectively to unseen data. The supple-
mentary video shows force prediction during application of
successively larger voltage pulses to a device on a human
wrist; the model correctly estimates non-zero contact force
at the time where skin contact is visibly apparent.

IV. CONCLUSIONS AND FUTURE WORK

This work demonstrates that the skin contact and normal
force rendered by a soft wearable haptic devices can be
estimated using input voltage and a time window of actuator
capacitance measurements. The framework achieves robust
contact detection performance despite the inherent nonlinear
behavior of CUTE devices and the variability in actuator
mounting conditions and haptic cues. Reliable classification of
contact events marks an important step toward personalized,
adaptive haptic feedback and supports further exploration of
generalized contact/no-contact feedback across users.

Future work will extend the proposed framework to in-
teractions with deformable, skin-like substrates that replicate
the diverse mechanical properties of human tissue. We also
plan to significantly expand the dataset in both scale and
variability, enable real-time inference, investigate alternative
machine-learning architectures, improve the accuracy of force
estimation, and quantitatively validate the predicted contact
forces across multiple users.
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