
  

  

I. INTRODUCTION     

Recently, tactile sensation has gained importance in 
product development for enhancing perceived product value. 
Accordingly, tactile quantification has progressed to 
objectively evaluate its impact on product quality in texture. In 
particular, systems estimating sensory values like “smooth” or 
“rough” from physically acquired data upon tracing are 
anticipated for objective understanding. Although machine 
learning enhances estimation accuracy, it typically 
necessitates large datasets. The acquisition of tactile data, 
however, is both resource-intensive and time-consuming. 

To address this issue of data acquisition, data 
augmentation could be one of the solutions. This study 
proposes to use Conditional Generative Adversarial Networks 
(CGANs) for tactile data augmentation. While CGANs have 
been applied to spectrogram generation for tactile displays [1], 
we are the first to use them for data augmentation in tactile 
estimation. By generating synthetic spectrograms of pseudo 
tracing measurements by CGAN-based generator that retains 
key tactile characteristics from real measurements, this study 
aims to enhance the tactile estimation performance of the 
machine-learning-based tactile estimation model. 

II. METHODOLOGY 

We propose a framework for tactile data augmentation 
using CGANs, aiming to improve tactile estimation accuracy. 
The proposed framework, illustrated in Fig. 1, consists of two 
primary components: (a) tactile estimation and (b) 
spectrogram generation using CGANs. 

A. Tactile Estimation Model 

The tactile estimation model receives spectrograms of 

vibration data—acquired from a tactile sensor during sample 

tracing—as input, and outputs estimated scores 

corresponding to the evaluation items listed in Table I, which 

were used in the sensory evaluation experiment. Since the 

 

TABLE I.  EVALUATION ITEMS 

Japanese English 

Dekobokosuru Uneven 

Hukahukasuru Feathery 

Sarasarasuru Smooth 

Hinyarisuru Cool 
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Figure 1.  Framework for tactile estimation and tactile data augmentation 
using CGANs. (a) The tactile estimation model predicts tactile evaluation 

scores from the spectrograms of vibration data obtained by a tactile sensor 

upon tracing on samples, potentially enhanced by data augmentation. (b) 

Generator creates spectrograms of vibration from pseudo tracing 

measurements based on the embedding vectors representing the sample types 
and noise, Discriminator evaluates the authenticity of the created 

spectrograms. The generator and the discriminator are trained adversarially 

to develop the effective generator.  

model utilizes spectrogram images as input, its architecture 
comprises convolutional layers for feature extraction, 
followed by a flattening layer and fully connected layers for 
tactile score estimation, i.e., CNN. Spectrograms were 
employed as they effectively capture time-frequency 
characteristics of vibration signals related to tactile 
perception, while being compatible with both CNN and 
GANs. The model was trained on a dataset (cf. II.D) using 
mean square error (MSE) loss as the loss function with an 
80:20 split for training and validation. 

B. Data Augmentation using CGANs 

The CGANs consist of a generator and a discriminator that 
compete against each other during training to improve 
performance. The generator transforms conditioned 
embedding vector, representing the sample types, and random 

(a) Tactile Estimation

(b) Spectrogram Generation Using CGANs
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noise into pseudo-spectrograms using transposed 
convolutional layers. The discriminator evaluates the 
authenticity of spectrograms using convolutional layers, 
conditioned on the embedding vectors representing sample 
types. For each sample, the variance of 10 
pseudo-spectrograms and that of 10 real spectrograms were 
calculated. The sum of absolute errors between these 
variances across samples was used to select the best generator, 
ensuring data diversity, which is crucial for enhancing the 
generalization capability of the tactile estimation model 
during training.  

C. Dataset Preparation 

Dataset was employed from the previous study of the 
authors [2]. Vibration data was collected using a piezoelectric 
sensor upon tracing 15 samples at constant speed of 20 mm/s 
and normal force of 0.5 N, which were determined based on 
human tactile perception behavior. These signals were 
converted into spectrograms via Short-Time Fourier 
Transform. Forty participants (20M/20F; mean age 
22.6±0.98) evaluated each sample using the Semantic 
Differential (SD) method on a 7-point scale using four 
evaluation items (Table I). The experiment protocol was 
approved in advance by the Bioethics Board of the Faculty of 
Science and Technology, Keio University (2022-001). The 
mean evaluation score across participants served as ground 
truth. The samples were clustered into three classes based on 
the evaluation scores, with one test sample selected from each 
class. These three test samples—Vinyl, Rubber, and 
Wood—were individually excluded from both the CGANs 
and the tactile estimation model training to serve as unknown 
samples for the estimation verification. 

D. Evaluation of Tactile Estimation Model trained w/ or w/o 

data augmentation 

To evaluate the effectiveness of the proposed data 
augmentation, we prepared two datasets for training the 
tactile estimation model as Table II, and compared their 
estimation errors for test samples. 

III. RESULT 

A. Quality of Generated Spectrograms 

Fig. 2 compares a real spectrogram and a 
CGAN-generated spectrogram of a leather sample. The t-SNE 
visualization in Fig. 3 shows the distribution of real and 
generated spectrograms in a feature space for all samples 
except for the Vinyl sample, which was used as the test 
sample. The generated data cluster near the real data, although 
some distributional bias is observed; nevertheless, the results 
suggest that effective data augmentation can be expected. 

TABLE II.  TWO DATASETS 

Dataset Real data Pseudo data Total 

Real data only 10×14 samples 0 140 

Augmented dataset 10×14 samples 90×14 samples 1400 

 

 

 

Figure 2.  Comparison of real (left) and CGAN-generated (right) 

spectrograms from a leather sample. 

 

 

 

 

 

 

Figure 3.  t-SNE visualization of real (cross marks) and generated (dots) 
spectrogram distributions in feature space, with each color representing a 

different sample type. 

TABLE III.  MEAN ABSOLUTE ERRORS ON THE VINYL TEST SAMPLE 

Evaluation 

Items 

Real 

data only 

Augmented  

dataset 

Improvement 

ratio 

Dekobokosuru 1.026 1.042 -1.6 % 
Hukahukasuru 1.703 1.304 23.4 % 

Sarasarasuru 0.491 0.489 0.4 % 

Hinyarisuru 0.566 0.497 12.2 % 

Total 3.786 3.332 12.0 % 

B. Improvement in Tactile Estimations 

Table III summarizes the mean absolute errors between 
predicted and actual sensory evaluation scores for each 
evaluation item when the Vinyl sample is treated as unknown. 
The models trained with augmented dataset showed a 
tendency toward lower absolute prediction errors compared to 
those trained with real data only. Similar improvements were 
observed in the other two test samples, with total mean 
absolute errors decreasing by 6.9% for the Rubber sample and 
12.5% for the Wood sample. 

C. Discussion 

A consistent reduction in total mean absolute error across 
all test samples suggests that the CGAN-generated data 
contributed positively to the estimation model performance. 
This indicates that the generated spectrograms captured 
structural characteristics of the real data, allowing them to 
function effectively as supplementary training inputs. 

However, the improvement varied depending on the 
evaluation items, and in some cases, the estimation accuracy 
decreased. t-SNE visualizations showed that while the 
generated data were generally located near the real data 
clusters, distributional bias remained. This bias may have 
limited the effectiveness of the data augmentation. 

IV. CONCLUSION AND FUTURE WORK 

This study demonstrated that CGAN-generated 
pseudo-spectrograms can contribute to improving the tactile 
estimation performance. Future work will focus on addressing 
distributional bias in generated data to achieve more diverse 
and meaningful data augmentation. 
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